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Abstract

We develop a multivariate dynamic factor model that exploits euro area country-specific

information on output and inflation for estimating an area-wide measure of the output

gap. In the proposed multi-country framework we moreover allow for flexible stochas-

tic volatility (SV) specifications for both the error variances and the innovations to the

latent quantities in order to deal with potential changes in the commonalities of busi-

ness cycle movements. By tracing the relative importance of the common euro area

output gap component as a means to explaining movements in both output and infla-

tion over time, the paper provides valuable insights in the evolution of the degree of

synchronicity of the country-specific business cycles. In an out-of-sample forecasting

exercise, the paper shows that the proposed approach performs well as compared to

other well-known benchmark specifications.
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1 Introduction

In this paper we develop a multi-country business cycle model for the euro area (EA).

The proposed model assumes that country-specific business cycles are driven by a com-

mon latent factor and thus exploits cross-sectional information in the data. To control for

changes in the degree of synchronicity, we furthermore assume that the innovations to the

latent quantities as well as the measurement errors are time-varying and follow a stochastic

volatility (SV) process. One methodological key innovation is the introduction of global-

local shrinkage priors on the process variances to the state equations describing the law of

motion of the logarithmic volatility components, effectively shrinking the system towards

a homoskedastic specification, if necessary.

The model aims to connect the literature on output gap modeling (see, among many

others, Kuttner, 1994; Orphanides and Van Norden, 2002; Basistha and Nelson, 2007;

Planas et al., 2008) that focuses on estimating the output gap based on data for a sin-

gle country/regional aggregate with the literature on dynamic factor models (Otrok and

Whiteman, 1998; Kim and Nelson, 1999; Kose et al., 2003; Breitung and Eickmeier, 2015;

Jarocinski and Lenza, 2015). We assume that output as well as inflation across selected

EA member states share a common cyclical behavior, pointing towards an underlying area-

wide latent gap process. Recent post-crisis evidence, however, also points towards sig-

nificant deviations of countries that share a common set of macroeconomic fundamentals

from this general pattern. To control for this, we assume that measurement errors as well

as country-specific trend components display conditional heteroskedasticity, which pro-

vides sufficient flexibility to capture deviations from a common cyclical component in the

presence of idiosyncratic shocks.

This increased flexibility, however, is costly in terms of additional parameters to esti-

mate. We thus follow the recent literature on state space modeling (Frühwirth-Schnatter
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and Wagner, 2010; Belmonte et al., 2014; Kastner and Frühwirth-Schnatter, 2014; Bitto

and Frühwirth-Schnatter, 2016; Feldkircher et al., 2017) and exploit a non-centered pa-

rameterization of the model (see Frühwirth-Schnatter and Wagner, 2010) to test whether

SV is supported by the data. The non-centered parameterization allows treating the square

root of the process innovation variances as standard regression coefficients, implying that

standard shrinkage priors can be used. Here we follow Griffin and Brown (2010) and use

a variant of the Normal-Gamma (NG) shrinkage prior that introduces a global shrinkage

component that is applied to all process variances simultaneously, forcing all of them to-

wards zero. Local shrinkage parameters are then used to drag sufficient posterior mass

away from zero even in the presence of strong global shrinkage, allowing for non-zero

process variances in the presence of strong global shrinkage.

Our measure of the output gap is closely linked to estimates reported in previous stud-

ies (Planas et al., 2008; Jarocinski and Lenza, 2015). To assess how much variance of

the stationary component of a given time series is explained by the cycle, we compute the

commonalities of the factor model over time. Using this measure we find that for output,

the amount of variation explained is high with relatively little variation over time. For

inflation, we generally observe lower levels of explained variation but the amount of time

variation appears to be much higher, reaching a peak during the early 2000s and staying

high afterwards. To assess the sensitivity of output and inflation across Europe, we per-

form a simple counterfactual exercise. Specifically, we shock the equation for the common

output gap and inspect whether there exist country-specific differences.

The paper moreover evaluates the performance of the modeling approach in terms of

forecasting, paying particular attention to how much the introduction of a common output

gap improves predictive capabilities. Compared to a range of simpler alternatives that

range from univariate benchmark models to models that use alternative ways to calculate

the output gap, our model markedly improves output predictions. For inflation, the results
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appear to be rather mixed, with the model approach proposed in Stock and Watson (1999;

2007) performing best.

The remainder of the paper is structured as follows. Section 2 describes the economet-

ric framework adopted. After providing an overview of the model, we discuss the Bayesian

prior choice and briefly summarize the main steps involved in estimating the model. Sec-

tion 3 presents the empirical application, starting with a summary of the dataset used and

inspects various key features of our model. The section moreover studies the dynamic

impacts of business cycle shocks to the country-specific output and inflation series. In a

forecasting exercise, Section 4 compares the out-of-sample predictive performance of our

model with other specifications. The final section summarizes and concludes the paper.

2 Econometric framework

2.1 A dynamic factor model for the euro area

Let denote yjt and ∆pjt output and inflation for country j = 1, . . . , N in period t = 1, . . . , T ,

respectively. We assume that output and inflation feature a country-specific non-stationary

trend component τ kjt, for k ∈ {y,∆p}, and depend on a common cyclical component ft,

yjt = τ yjt + αyjft + εyjt, (2.1)

∆pjt = τ∆p
jt + α∆p

j ft + ε∆pjt , (2.2)

with εkjt ∼ N (0, eh
k
jt) being a set of independent heteroskedastic shocks. The sensitivity of

output and inflation with respect to movements in the common component ft are governed

by a set of factor loadings αkj .
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We augment the model by two additional equations that measure euro area output, y0t,

and inflation ∆p0t,

y0t = τ y0t + ft, (2.3)

∆p0t = τ∆p
0t + α∆p

0 ft + ε∆p0t . (2.4)

Note that Eq. (2.4) implies that ft can be interpreted as the output gap, i.e. the deviation

of output from trend output, measured through τ y0t.

The time-varying components of Eq. (2.1) to Eq. (2.4) are assumed to evolve according

to a vector autoregressive model of order two,


τ yt

τ∆p
t

ft


︸ ︷︷ ︸

τt

=


IN+1 . . . 0

... IN+1
...

0 . . . φ1


︸ ︷︷ ︸

A1


τ yt−1

τ∆p
t−1

ft−1


︸ ︷︷ ︸
τt−1

+


0 . . . 0

... . . . ...

0 . . . φ2


︸ ︷︷ ︸

A2


τ yt−2

τ∆p
t−2

ft−2


︸ ︷︷ ︸
τt−2

+


η
τy
t

η
τ∆p

t

ηft


︸ ︷︷ ︸

ηt

, (2.5)

with τ kt = (τ k0t, τ
k
1t, . . . , τ

k
Nt)
′, and ηkt = (ηk0t, η

k
1t, . . . , η

k
Nt)
′.

For the AR(2) parameters φ1 and φ2 we follow Planas et al. (2008) and reparameterize

the state equation in ft as follows,

ft = 2 Q cos(2π/γ)ft−1 −Q2ft−2 + ηft . (2.6)

Hereby, Q determines the amplitude and γ the frequency of the cycle. This parameter-

ization has the convenient property that prior information on the length as well as the

intensity of the business cycle can be introduced in a relatively easy manner.

For the sake of simplicity, Eq. (2.5) may be rewritten in terms of a standard multivariate

regression model

τt = AXt + ηt, (2.7)
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with A = (A1,A2) and Xt = (τ ′t−1, τ
′
t−2)′.

Similarly to the measurement errors we follow Stock and Watson (1999; 2007) and

assume that the shocks to the states are mutually orthogonal with time-varying variances,


η
τy
t

η
τ∆p

t

ηft

 ∼ N (0,Σt). (2.8)

Σt is a K × K diagonal variance-covariance matrix with K = 2(N + 1) + 1 and typical

element σ2
ii,t = esit for i = 1, . . . , K.

We assume that the error variances of the observation equations in Eq. (2.1) to Eq. (2.4)

as well as the shocks to the states in Eq. (2.5) follow a stationary stochastic volatility

process,

hkjt = µkj + %kj (h
k
jt−1 − µkj ) + ωkjt, ωkjt ∼ N (0, ϑkhi), for j = 1, . . . , N, (2.9)

sit = µτi + %τi (s
τ
it−1 − µτi ) + ωτit, ωτit ∼ N (0, ϑτsi), for i = 1, . . . , K. (2.10)

The autoregressive parameters are given by %kj and %τi while the means of the log-volatility

processes are given by µkj and µτi . Finally, the state innovation variances are given by ϑkhi

and ϑτsi. It worth noting that if a given ϑkhi equals zero, the corresponding variance is

constant.

The main implications of our model are as follows. First, we extract the cyclical com-

ponent of EA output using a dynamic factor model with manifest variables given by output

and inflation of the member countries. This, in turn, will enable us to assess to what extent

output and inflation movements within the EA are driven by a common cyclical component

that can be interpreted as an area-wide output gap. Second, we assume that the gap in

inflation is proportional to the output gap plus a white noise error. This is mainly in line
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with recent applications of multivariate unobserved component models for inflation (see,

for example, Stella and Stock 2013). Finally, the flexible stochastic volatility assumption

on the measurement error variances and process variances captures the notion that trend

output and inflation tend to display more uncertainty during turbulent times. This feature

is particularly crucial for producing precise predictive densities.

2.2 Bayesian inference

The model outlined in the previous subsection is quite flexible, however, heavily parameter-

ized. This calls for regularization in the form of Bayesian shrinkage. We start by outlining a

general strategy to shrink our proposed factor model towards a simpler specification when

it comes to deciding on what components should feature conditional heteroskedasticity. We

moreover present our prior setup on the remaining free coefficients of the model described

in the previous subsection.

In what follows we focus on how to flexibly shrink the variances in the state innovation

variances in Eq. (2.5) to zero. Shrinkage to homoskedasticity in the observation equation

is achieved in a similar manner. Following Frühwirth-Schnatter and Wagner (2010) and

Kastner and Frühwirth-Schnatter (2014), squaring and taking logs of the jth equation of

Eq. (2.7) and rewriting yields a non-centered parameterization of the state space model,

ε̃jt = µτj +
√
ϑτsj s̃jt + vjt, vjt ∼ lnχ(1) (2.11)

s̃jt = %τj s̃jt−1 + wjt, wjt ∼ N (0, 1), (2.12)

s̃jt =
sjt − µτj√

ϑτsj
, (2.13)

with ε̃jt = ln(τjt−Aj•Xt)
2 and Aj• selecting the jth row of the matrix A. Equation (2.12)

implies that the process variance ϑτsj as well as the unconditional mean µτj is moved into the

observation equation. Conditional on the full history of the normalized log-volatilities and
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the mixture approximation to render Eq. (2.12) conditionally Gaussian (Kim et al. 1998),

the process variances and parameters can be obtained by estimating an otherwise standard

Bayesian linear regression model.

This implies that standard shrinkage priors can specified on
√
θsj. Here we adopt the

flexible shrinkage prior proposed in Griffin and Brown (2010) and recently adopted within

the framework of univariate state space models in Bitto and Frühwirth-Schnatter (2016),

ϑτsj ∼ G (1/2, 1/(2Bsj))⇔
√
ϑτsj ∼ N (0, Bsj), (2.14)

with Bsj being a shrinkage hyperparameter with

Bsj ∼ G(κs, κsξs/2), ξ ∼ G(d0, d1). (2.15)

ξs is a so-called global shrinkage parameter that pushes
√
ϑτs = (

√
ϑτs1, . . . ,

√
ϑτsK)′ to zero.

Moreover, κs and d0, d1 are hyperparameters specified by the researcher. Intuitively speak-

ing, the global shrinkage parameter exerts shrinkage towards the origin while Bsj serves to

pull certain elements of
√
ϑτs away from zero even if ξs is large (i.e. heavy global shrink-

age is introduced). Notice that ξs introduces prior dependence and can be thought of as a

common factor that efficiently pools information across coefficients.

The same prior choice is also adopted for the process innovation variances in the log

volatility equations for the measurement errors (see Eq. (2.9)), i.e.

√
ϑkhi ∼ N (0, Bk

hj), B
k
hj ∼ G(κh, κhξh/2), ξh ∼ G(e0, e1). (2.16)

Notice that the common parameter κh pools information on error variances in the log-

volatilities across all output and inflation equations, effectively introducing global shrink-

age across variable types.
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Bitto and Frühwirth-Schnatter (2016) label this prior a double Gamma prior (if placed

on the variances). Consistent with the literature we set κs = κh = 0.1 and d0 = d1 = e0 =

e1 = 0.01. This choice is consistent with heavy shrinkage on all process variances while

maintaining heavy tails in the underlying marginal prior.

Following Planas et al. (2008), we specify a Beta distributed prior on Q,

Q ∼ B(aQ, bQ), (2.17)

with aQ and bQ denoting hyperparameters. For γ we adopt also adopt a Beta prior with

γ − γL
γH − γL

∼ B(aγ, bγ). (2.18)

This prior restricts the support of γ by specifying a minimum wave length γL, which is set

equal to two, and a maximum length γH set equal to T . The parameters aγ, bγ are fixed

hyperparameters.

For the remaining parameters of Eqs. (2.9) - (2.10) we follow Kastner and Frühwirth-

Schnatter (2014) and use an uninformative Gaussian prior on the unconditional mean, i.e.

µkj ∼ N (0, 102), µτj for all i, j, k as well as a Beta prior on the persistence parameter %kj ∼

B(25, 5) and %τi ∼ B(25, 5). On the factor loadings αkj we use a sequence of independent

Gaussian priors,

αkj ∼ N (0, 1).

Finally, we specify the priors on the initial state τ0 and the log-volatilities to be fairly

uninformative with each element being normally distributed with zero mean and a variance

102.

Estimation is carried out using a Markov chain Monte Carlo (MCMC) algorithm de-

scribed in section A. The algorithm is repeated 50,000 times with the first 25,000 draws
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discarded as burn-in. Convergence and mixing of most model parameters appear to be sat-

isfactory. However, we find a substantial degree of autocorrelation for the factor loadings

in selected countries. To assess the sensitivity of our findings, we thus re-estimated the

model a moderate number of times based on different initial values. The corresponding

findings appear to be remarkably robust.

3 Empirical application

3.1 Data overview and model specification

For the empirical application, we use quarterly data for economic output and inflation from

1985Q1 to 2013Q3. Our country sample comprises Austria (AT), Belgium (BE), Finland

(FI), France (FR), Germany (DE), Greece (GR), Italy (IT), Netherlands (NL), Portugal (PT)

and Spain (ES). Economic output and inflation is measured in terms of (the logarithm of)

real seasonally adjusted gross domestic product and the rate of consumer price inflation,

respectively.

3.2 Key features of the model

In this section we present some key features of the proposed model. We start by discussing

the estimated output gap along other competing measures of the output gap in Fig. 1.

The black line in Fig. 1 presents the posterior median of the estimated output gap for the

euro area resulting from the model framework sketched above (DFM-SV). In addition, the

orange line in Fig. 1 shows the output gap using a standard HP-filter (Hodrick and Prescott

1997), whereas the blue line depicts the output gap based on recent work by Hamilton

(2017) as a straightforward alternative to the HP-filter.1

1Specifically, the approach proposed by Hamilton (2017) is based on standard regressions of future output
on a constant and lags of the four most recent observations of output.
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Fig. 1: Estimated euro area output gap

Considering the results in the end of the 1980s indicates that the aggregate growth

rate of output has been below its potential for quite some time. Moreover, especially the

economic turmoils due to the financial crisis as well as the recent Euro crisis periods appear

particularly pronounced.

Overall, the estimated peaks and troughs of the estimated output gap component by

DFM-SV shows marked similarities to the gap estimates of recent work by Planas et al.

(2008) or Jarocinski and Lenza (2015). However, some differences between DFM-SV and

the alternative specifications depicted in Fig. 1 are still visible. Particularly in the 1990s,
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the estimated peaks and troughs of the output gap produced by DFM-SV appear to be

lower as compared to Hamilton or HP. The figure moreover shows that the estimated gap

component in our multi-country framework appears to react more quickly in the wake of

the financial crisis. We conjecture that the faster reaction of the output gap based on our

proposed specification can be traced back to the fact that information stemming from other

countries’ output reactions, with some countries leading the others.

The estimated posterior median of the stochastic volatility component of the euro area

output gap is presented it the top panel of Fig. 2 along with the lower 16th and upper 84th

percentile of the credible interval (orange lines). Figure Fig. 2 reports a significant increase

in volatility during periods of economic stress, especially during the crisis associated with

the burst of the dot-com bubble, the 9/11 terrorist attacks and the period of the global

financial crisis. Notice that volatility remains at an elevated level during the crisis of the

Euro area in 2011 and afterwards.

An additional indication for the importance of accounting for time variation in the error

variances is depicted in the bottom panel of Figure 2. The figure reports the signed square

root of the error variance. Since the sign of the square roots of ϑkhi and ϑτsi in equations (2.9)

and (2.10) are not identified, the non-identification of the respective signs may be exploited

by randomly switching the sign of ϑkhi and ϑτsi and assessing the corresponding posterior

distribution. If the resulting posterior density is centered on zero, we obtain only limited

evidence in favor of a heteroskedastic specification for the error variances. By contrast, a

bimodal posterior distribution points towards time-variation in the corresponding volatility

component. The bottom panel in Figure 2 clearly shows a bimodal posterior, providing a

simple yet effective visual assessment whether heteroscedasticity is needed.

In order to assess the importance of accounting for a common component in our multi-

country framework over time, we moreover compute variance decompositions for the

country-specific variations in output and inflation. Figure 3, for example, shows the share
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Fig. 2: Stochastic volatility of the EA output gap (top panel) and signed square root of
error variance (bottom panel)

of the variance explained by the common gap component in the respective country-specific

output equation. The respective decompositions for the inflation series are depicted in

Fig. 4. Since the country-specific trend components given in Eqs. (2.1) and (2.2) are non-

stationary and thus increase over time in an unbounded manner, we compute the share

attributable to the common component in terms of the stationary part of the model (i.e. by

considering the variance of the measurement errors as well as the gap component).

The proportion of variance explained for output given in Fig. 3 appears to be rather

large across all output series considered. Concerning the overall variance explained for
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economic output, some countries under scrutiny, however, exhibit notable smaller shares

as compared to the remaining economies. These countries include Germany, Greece, Spain

and Italy, pointing towards a more diverging behavior in output trajectories. With some

exceptions, the share of variance explained is typically above a 50% threshold for the entire

time span. Some notable exceptions include Germany, Greece, Spain, or Italy, where overall

shares appear markedly lower as compared to the other countries. Similar to the stochastic

volatility component depicted in Figure 2, Figure 3 also shows pronounced increases in

the variance decompositions in the early 2000s, during the financial crisis as well as in

the wake of the recent Euro crisis. This, again, provides considerable evidence that during

economic downturns, the cross-correlation across countries increases and business cycle

synchronization becomes stronger.

As compared to the variance decompositions for economic output, the respective de-

compositions for the country-specific inflation series appear more heterogeneous, both

across countries and time. Especially for Belgium, Germany, France and Italy, the share

explained by the common component appears particularly high across the estimation pe-

riod. An additional interesting aspect of figure is the sharp decline in variation explained

in the beginning of the 1990s for Germany. This period captures the German reunification

process, with the sharp increase in explanatory power of the common component pointing

towards a better synchronization of price dynamics across Europe. In this period, similar

patterns are visible due to the economic turmoils in Italy.

For the remaining countries under consideration, the common gap component appears

to explain far less, especially in the beginning of the sample. Due to the convergence

process of the country-specific inflation series in the euro area in the late 1990s, Fig. 4 also

shows pronounced increases in the explained variation in this period. In the late 2000s,

however, a diverging behavior in the inflation series is clearly visible, translating in sharp

decreases in the variance decompositions.
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Fig. 3: Variance decomposition for output
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Fig. 5: Responses of the euro area output gap to a one standard error business
cycle shock

3.3 Dynamic responses of output and inflation to an area-wide business cycle shock

This subsection aims at studying the dynamic effect of business cycle shocks to output and

inflation across the euro area. Figure 5 depicts the posterior distribution of the dynamic

response of the common output gap to a (negative) one standard deviation business cycle

shock. The orange line in the figure shows the median responses over time along with

lower 16th and upper 84th percentiles of the posterior distribution (in blue).

We find a negative and immediate impact on the common gap component. This effect

appears to die out after around five to six quarters. Notice that Fig. 5 only measures the

response of the latent gap component. Polcy makers, however, might be interested in how

changes in the common cycle impact prices and output within each country considered.

To this end, the left panel in Fig. 6 presents boxplots of the posterior distribution of the

maximum output responses with red whiskers indicating 16th and upper 84th percentiles

of the posterior distribution. Maximum absolute responses to the inflation series are shown

in the right panel in Fig. 6.

As shown in Fig. 6 (a), the maximum posterior responses for output appear rather

heterogeneous among the countries in the sample. For five out of ten economies, we find
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pronounced movements in output in reaction to a shift in the common cycle. The strongest

negative reactions can be found in France, Austria, and Finland. Interestingly, we find

no evidence that Germany reacts to a common business cycle shock when the maximum

is considered. Notice, however, that this could also be purely driven by the selection of

the absolute maximum response which might be linked to a particular impulse response

horizon.

Turning to the maximum responses of inflation in panel (b) of Fig. 6 reveals that all

countries face lower levels of inflation. The underlying transmission mechanism indicates

that if economic agents face a downturn in real activity, companies lower prices in order

to increase sales, effectively mitigating the drop in demand. Consistent with the reactions

of economic output, we observe comparatively stronger price reactions in Austria, France

and Finland. The rather heterogeneous response pattern corroborates and extends find-

ings in Peersman (2004) and Barigozzi et al. (2014), who report asymmetric responses of

macroeconomic quantities to common monetary policy shocks in the euro area.

4 Forecasting evidence

In this section, we aim to assess whether using our proposed model specification (labeled

here DFM-SV) pays off in terms of predictive capabilities by using an out-of-sample forecast

exercise in other to shed light on the predictive importance of specific components of the

specification. Forecasts of DFM-SV are computed for the period ranging from 1989Q1 to

2013Q3. The competing benchmark specifications are as follows:

• A variant without a euro area gap component, labeled as UC-SV. This model serves

to assess the merits of including a common cyclical component.
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Fig. 6: Negative of the maximum absolute impact of a negative one standard error business
cycle shock on (a) Output and (b) Inflation

• A specification labeled as UC-SV-Cycle augments the former by a (potentially over-

parameterized) trend-cyle decomposition. This implies that for each time series, we

estimate a model with a stochastic trend and a cyclical AR(2) component.

• Recent work by Hamilton (2017) advocates a simple alternative as a means to decom-

pose cyclical and trend components of econometric time series. The approach relies

on simple forecasts using a constant and the four most recent observations of the

quantity under consideration. This benchmarked, labeled as Hamilton, replaces the

common component by using an estimate of the gap based on the approach discussed

in Hamilton (2017).

• Standard benchmark specifications include simple random walk specifications (RW)

or first order autoregressive processes (AR(1)), both estimated with stochastic volatil-

ity in the errors.
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DFM-SV UC-SV UC-SV-Cycle Hamilton AR(1) RW

Output
AT 323.0 323.7 320.4 317.3 330.1 298.2
BE 338.6 325.7 331.5 324.0 247.8 208.8
DE 334.5 329.5 323.0 323.8 330.3 311.0
GR 272.1 276.2 271.3 272.6 247.5 176.3
ES 320.2 322.5 308.1 316.2 294.0 327.0
FI 285.0 291.2 280.0 287.8 291.1 269.2

FR 358.6 359.6 347.9 351.2 314.7 339.5
IT 355.4 346.4 335.0 343.5 309.7 309.4

NL 319.3 333.5 325.1 327.7 333.8 307.8
PT 322.3 304.1 312.0 311.0 309.4 175.8

Inflation
AT 403.1 434.2 447.4 327.4 391.0 420.5
BE 412.9 422.9 421.4 376.1 400.0 395.4
DE 383.1 434.4 440.9 330.5 404.5 330.1
GR 385.2 383.6 384.2 335.2 349.2 335.2
ES 400.3 391.2 409.7 366.5 395.0 374.0
FI 440.5 438.0 441.7 396.4 434.2 428.3

FR 453.7 448.7 451.0 316.2 405.3 356.5
IT 443.3 443.7 450.1 285.7 440.5 429.7

NL 430.2 429.2 438.1 423.1 379.8 362.0
PT 397.7 393.7 388.3 247.9 263.0 267.5

Joint performance
Output 3,228.9 3,212.4 3,154.2 3,175.2 3,008.5 2,722.9

Inflation 4,150.0 4,219.4 4,272.9 3,405.0 3,862.4 3,699.1

Table 1: Marginal log-predictive scores

The country-specific out-of-sample forecast performance for the competing model spec-

ifications under scrutiny, measured in terms of marginal log-predictive scores, are reported

in Table 1. DFM-SV appears to outperform the alternative specifications in countries such

as Belgium, Germany, Italy, or Portugal. On the contrary, the specification without an

euro area output gap (UC-SV) appears to slightly outperform for Greece, Spain, Finland,

and France. However, compared to the alternative specifications, the table reveals non-

negligible advantages in the overall out-of-sample predictive performance of the proposed
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model (DFM-SV) in terms of predicting economic output. Specifically, DFM-SV displays the

strongest forecasting performance, closely tracked by UC-SV and the model based on the

Hamilton approach ranked third. Standard benchmarks such as the simple AR(1) model

or the random walk appear to work well in selected countries but are generally beaten by

models that take into account cross-country information.

With some few exceptions, the specification UC-SV-Cycle hardly manages to produce

more precise forecasts for output as compared to the more parsimonious UC-SV and DFM-

SV models. The specification using the trend-cycle decomposition advocated by Hamilton

(2017) produces marked increases in the predictive out-of-sample performance in eco-

nomic output as compared to UC-SV-Cycle for most countries. However, similarly to UC-

SV-Cycle, this approach also fails to outperform our proposed DFM-SV model.

Summing up, for output we find that our multivariate state space model clearly out-

performs all alternative specifications considered. Standard benchmarks such as first-order

autoregressive processes or random walks also appear to severely underperform as com-

pared to DFM-SV. Notable exceptions are output predictions in Austria or the Netherlands,

where the first-order autoregressive specifications appear to produce the most precise den-

sity predictions.

For inflation, we observe a slightly weaker performance of our proposed model with the

UC-SV-Cycle specification performing best for almost all countries under scrutiny. Excep-

tions appear to be inflation forecasts for France and Portugal, where the DFM-SV specifica-

tion yields the best predictive performance. For Belgium, we observe that UC-SV performs

best. Considering joint predictive performance for inflation corroborates the findings based

on marginal log scores, showing that UC-SV-Cycle outperforms all competing alternatives.

This finding is consistent with Stock and Watson (1999; 2007) who show that using similar

models like the UC-SV and the UC-SV-Cycle yields precise inflation predictions.
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Fig. 7: Marginal log-predictive scores over time

Figure 7 depicts the predictive performance measured in terms of marginal log-predictive

scores relative to the random walk (red line) over time. The top panel of the figure presents

the joint performance for output, whereas the bottom panel shows the overall predictive

performance for inflation. In line with the summary metrics presented in Table 1, Figure

7 shows a pronounced outperformance of DFM-SV in terms of forecasting economic out-

put especially in the recent decade. Interestingly, albeit the out-of-sample performances

between DFM-SV and UC-SV appeared very similar in the past, a marked decoupling of

the two series is particularly pronounced in the aftermath of the financial crisis. In the

recent decade DFM-SV appeared to outperform the other specifications in terms of fore-
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casting real activity, indicating the importance of accounting for a common gap component

in the aftermath of the economic turmoil. For the joint predictive performance of inflation,

the opposite is the case. Especially in the last decade of the sample, UC-SV appeared to

outperform the specification including the common factor (DFM-SV). However, in terms

of predictive performance, both specification are outperformed by UC-CV-Cycle for almost

the entire forecast period.

5 Concluding remarks

In this paper we estimate a Bayesian multivariate unoberved components for output and

inflation in the spirit of Stock and Watson (2002) for the euro area countries. The multi-

country framework allows to explicitly account for country-specific trajectories in the econo-

metric series, augmenting and extending the framework proposed in Stella and Stock

(2013) along several dimensions. To account for both common and country-specific factors,

the proposed model specification explicitly accounts for a latent common gap component

for economic output in the euro area. In order to alleviate the potential problem of over-

parameterization of the model, the proposed estimation strategy moreover involves recent

regularizations in terms of Bayesian shrinkage.

The estimated trends and gap components appear to match the timing of the economic

peaks and troughs very well. In a forecasting exercise, the paper moreover compares the

forecast performance of the proposed model specification with other well-known bench-

mark specifications. The out-of-sample forecast exercise shows that accounting for a com-

mon euro area output gap component produces particularly precise forecasts for the eco-

nomic output series under scrutiny.
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A Full conditional posterior distributions

It is worth noting that the joint posterior distribution of the model parameters and the set

of latent states is intractable. Fortunately, the full conditional posterior distributions for

most quantities are of a simple form and thus amenable to standard Gibbs updating.

In order to obtain a draw from the joint posterior we design a straightforward Markov

chain Monte Carlo (MCMC) algorithm that cycles through the following steps:

(1) Simulate the full history of {τt}Tt=1 using a forward filtering backward sampling algo-

rithm (Carter and Kohn 1994, Frühwirth-Schnatter 1994).

(2) Draw the sequence of log-volatilities {hkjt}Tt=1, {sit}Tt=1 for all i, j, k as well as the pa-

rameters in the corresponding state equations independently using the algorithm pro-

posed in Kastner and Frühwirth-Schnatter (2014).

(3) Conditional on the latent states, we simulate the loadings αkj by estimating N + 1

independent regression models with heteroskedastic innovations

(4) The parameters Q and γ are updated in a block by using a standard random walk

Metropolis Hastings algorithm.

(5) Update Bsj and its counterpart Bk
hi by sampling from an generalized inverted Gaus-

sian (GIG) distribution.

(6) Sample ξs and ξh from a Gamma distributed conditional posterior distribution.

Steps (1) to (4) are standard and easily executed. Steps (5) and (6) deserve more attention.

In the empirical application we repeat this algorithm 30,000 times and discard the first

15,000 as burn-in.
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The full conditional of Bsj follows a GIG distribution that is obtained by combining the

conditional density p(
√
ϑτsj|Bsj) with the conditional prior p(Bsj|ξs),2

Bsj|• ∼ GIG(κs − 1/2, ϑτsj, ξsκs), for j = 1, . . . , K, (A.1)

where • denotes conditioning on all remaining quantities of the model.

Likewise, the full conditional posterior of Bk
hj is given by

Bk
hi|• ∼ GIG(κh − 1/2, ϑkhi, ξsκs), for i = 1, . . . , N ; k ∈ {y,∆p}. (A.2)

To obtain the full conditional posterior distribution for the global scaling parameters, we

combine the joint density
∏K

j=1 p(Bsj|ξs) with the prior p(ξs). This yields a Gamma dis-

tributed conditional posterior distribution,

ξs|• ∼ G

(
d0 + κsK, d1 + κs/2

K∑
j=1

Bsj

)
. (A.3)

Similarly to the conditional posterior of ξs, ξh also follows a Gamma distribution

ξh|• ∼ G

(
e0 + (2N + 1)κh, d1 + κh/2

[
N∑
j=1

By
hj +

N∑
j=0

B∆p
hj

])
. (A.4)

2The GIG distribution has a density which is proportional to p(x) ∝ xν−1exp(−{χ/x+ ψx}/2).
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