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This paper compares the forecasting performance of three different 
econometric models for the Eurozone and the USA: A vector auto regression 
(VAR), a Bayesian vector auto regression (BVAR), and a structural vector error 
correction model (SVEC). The forecast evaluation is based on 19 vintages of 
real time data for output, inflation rates, interest rates, the exchange rate and 
the money stock from the 4th quarter of 2004 until the the 1st quarter of 2010. 
The oil price is used as the only exogenous variable in the model. Imposing a 
stringent set of long-run assumptions on the econometric model results in less 
accurate forecasts. The difference is significant for several variables and 
forecast horizons. Reducing the comparison to data from the pre-financial 
crisis period reduces the size of forecast errors but does not change the 
overall picture. 
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1 Introduction  

In this paper the forecasting performance of three different econometric models for 

the Eurozone and the USA is assessed: A vector auto regression (VAR), a Bayesian 

vector auto regression (BVAR), and a structural vector error correction model (SVEC) 

which is based on Gaggl, Kaniovski, Prettner, & Url (2009). 

VARs can be regarded as an economic-theory-free way to capture dynamics in 

multiple time series. Due to the large number of parameters to be estimated VAR 

models, however, are often inefficient and suffer from over-parameterization and a 

low number of degrees of freedom. BVAR models can partly overcome these 

disadvantages by including a priori value assumptions into the estimation. Since 

Granger (1981) and Engle & Granger (1987) error correction models are known to be 

superior to VARs in the presence of co-integration in the estimated variables. 

Clements & Hendry (2008), however, show that this this need not be necessarily the 

case when equilibrium shifts occur within the forecasting period. Then SVEC models, 

in fact, do not ‘error correct’ but ‘equilibrium correct’. This built-in equilibrium, 

however, is outdated by the time the shift has occurred creating a series of forecast 

errors.  

 Section 2 provides a detailed overview of the data set, its manipulation and 

transformation, as well as an explanation for the use of real-time data. Section 3 

explains the three models used for forecasting and highlights the most important 

differences between them. Section 4 provides the reader with an illustration of the 

statistical tools used to assess forecast accuracy. In section 5 the forecast errors for 

the period 2004:Q4 to 2010:Q1 are presented. Since the results appear to vary widely 

among the three models, section 6 includes a test examining whether the 

differences are statistically significant or not. Following the reasoning of Clements & 

Hendry (2008), forecast errors are recalculated in section 7 covering quarterly 
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forecast errors for 2004:Q4 to 2008:Q2 only, i.e. before the recent financial crisis (a 

possible equilibrium shift) has occurred. The last section offers concluding remarks.  

2 Data 

Data were obtained from the Austrian Institute of Economic Research, the Statistical 

Warehouse of Eurostat and the Federal Reserve Bank of Philadelphia. The time series 

for the Eurozone- and US- price levels, GDP levels, and money supply M1 consist of 

real-time data (for a detailed explanation of real-time data see section 2.1). Oil 

prices and interest rates are regular time series, since they are not subject to revision 

and their historical values do not change when time progresses.  

The dataset consists of 23 vintages or time series. The first vintage includes data as 

observed in the 4th quarter of 2004 and ranges from the first quarter of 1970 to the 

third quarter of 2004; vintage #23 consists of data as observed in the second quarter 

of 2010 and ranges from the first quarter of 1970 to the first quarter of 2010. The 

following summary explains the meaning of abbreviations for the variables and 

which transformations have been applied for the use in the models.  

exch the natural logarithm of the normalized nominal Euro per US-Dollar 

exchange rate (base: first quarter 2000 = 1). 

hez natural logarithm of the normalized Eurozone M1 real per capita money 

stock in relation to real per capita GDP (base: first quarter 2000 = 1). 

hus  natural logarithm of the normalized US M1 real per capita money stock 

in relation to real per capita GDP (base: first quarter 2000 = 1). 

pez natural logarithm of the Eurozone consumer price index (base: first 

quarter of 2000 = 1). 

pus natural logarithm of the US consumer price index (base: first quarter         

  2000 = 1). 

rez natural logarithm of (1+rez/100), where rez is the annualized average 3 

month interest rate in the Eurozone. 
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rus natural logarithm of (1+rus/100), where rus is the annualized average 3 

month interest rate in the USA. 

yez natural logarithm of the normalized real per capital GDP in the 

Eurozone (base: first quarter of 2000 = 1). 

yus natural logarithm of the normalized real per capital GDP in the USA 

(base: first quarter of 2000 = 1). 

 pd pez minus pus; the price differential 

And as exogenous variable: 

poil natural logarithm of the import price for crude oil in US-Dollars.1

For estimation purposes all variables were seasonally adjusted using the program 

Tramoseats in Eviews. 

  

2.1 Real Time Data 

The meaning of real-time data in economics is a different one than that of real-time 

data in finance. In finance, e.g. on stock markets real-time data are obtained to get 

the latest information on prices or values to be able to react immediately on their 

changes. In economics, real-time data are used from a backward looking 

perspective, i.e. we look how the latest available information at a given point in time 

looked like back in history. When economic forecasts are performed one has to rely 

on the actual data. Economic indicators, however, are usually preliminary estimates 

themselves and subject to several revisions. Therefore, the use of such real-time data 

for forecasts creates a different conclusion than what would have been obtained by 

reapplying the same forecasting technique with revised data at a future point in 

time. Real-time time series are also called vintages. Like a good vintage wine is 

made from grapes of the same vintage year, a real-time vintage consists of data 

that were obtained at the same point in time.  

                                                 
1 A “d” in front of a variable’s name indicates that first differences have been calculated, e.g. dpoil 
comprises of first differences of poil, hence, contains one observation less. 
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To sum up, real-time datasets allow estimating models and simulating forecasts as if 

they had been computed at the date of the forecast, e.g. when looking at vintage 

set #1 (1970:Q1 – 2004:Q3) in this paper, we are in the position of a researcher 

performing forecasts in the end of year 2004 for the following quarters. Thanks to real 

time data we get 19 forecasts from each of the three models estimated.  

Table 1: Data Set Structure  

Date of forecast Vintage Estimation sample Forecast period 

 2004:Q4 1 1970:Q1 – 2004:Q3 2004:Q4 – 2005:Q3 

2005:Q1 2 1970:Q1 – 2004:Q4 2005:Q1 – 2005:Q4 

 

 …
 

 …
 

 …
 

 …
 

2009:Q2 19 1970:Q1 – 2009:Q1 2009:Q2 – 2010:Q1 

 

Figure 1: Forecasts and corresponding realizations 
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2.2 Data Manipulation 

I define the Eurozone as the aggregate of twelve countries: Austria, Belgium, Finland, 

France, Germany, Greece, Ireland, Italy, Luxembourg, Netherlands, Portugal and 

Spain. Annual population data were obtained from the Austrian Institute of 

Economic Research and were interpolated to achieve quarterly data in the same 

way as in Gaggl, Kaniovski, Prettner, & Url (2009), i.e. by using the Boot et al. (1967) 

method in Ecotrim.  

US Data 

US time series for CPI, GDP, Money Stock M1 are real-time data and were obtained 

from the Federal Reserve Bank of Philadelphia`s Real-Time Data Research Center. 

Thanks to the excellent correctness of the dataset and its convenient structure no 

further adjustments had to be made except changing the base year and computing 

3-month averages to get quarterly data for CPI, GDP and Money Stock M1.  

Eurozone Data 

Real-time data for the Eurozone (CPI, GDP, Money Stock M1) were obtained from 

Eurostat`s Statistical Warehouse and/or the Euro-Area Business Cycle Network 

(EABCN). Unfortunately Eurozone vintages do not range back to 1970. The first 

observation for Eurozone GDP and CPI is 1991Q1 while the first observation for 

Eurozone Money Stock M1 is 1980Q1. The missing years are filled up by calculating 

chaining factors over the incomplete vintages’ earliest (i.e. 1980 – 1984 and 1991 – 

1995) four years available. Therefore these last four years of data in each incomplete 

vintage are set in relation to data from 2010. Then, these factors are chain linked with 

actual available data (year 2010) back for the period of 1970 to 1980 or 1970 to 1991 

where necessary.  
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3 Models 

I estimate an unrestricted vector auto regression model (VAR), a structural vector 

error correction model (SVEC) based on Gaggl et al. (2009) and a Bayesian vector 

auto regression model (BVAR) based on Sims & Zha (1998). For all three models the 

initial estimation window is 1970:Q4 – 2004:Q3 (i.e. real-time vintage set #1) and the 

initial forecast window is 2004:Q4 – 2005:Q3. The last estimation window is 1970:Q4 – 

2009:Q1 (i.e. vintage set #19), while the last forecast window is 2009:Q2 – 2010:Q1. 

Since realizations are needed to calculate forecast errors, the first 19 vintages are 

used for estimation, while vintages 20 to 23 are used for comparison only. As 

equations 1 to 4 show, forecast errors,     𝑒𝑒𝑁𝑁+𝑣𝑣
ℎ , are calculated by subtracting one-, 

two-, three- and four-step ahead forecast values, 𝑦𝑦�𝑁𝑁+𝑣𝑣−1
ℎ , based on the information 

set available at time N+ν-1 from the corresponding one-, two-, three- and four- 

following quarters’ realizations, 𝑦𝑦𝑁𝑁+𝑣𝑣, corresponding to the first publication of the 

realization of y in N+ν :  

    𝑒𝑒𝑁𝑁+𝑣𝑣
ℎ=1 = 𝑦𝑦𝑁𝑁+𝑣𝑣 − 𝑦𝑦�𝑁𝑁+𝑣𝑣−1

ℎ=1         (1) 

𝑒𝑒𝑁𝑁+𝑣𝑣+1
ℎ=2 = 𝑦𝑦𝑁𝑁+𝑣𝑣+1 − 𝑦𝑦�𝑁𝑁+𝑣𝑣−1

ℎ=2      (2) 

𝑒𝑒𝑁𝑁+𝑣𝑣+2
ℎ=3 = 𝑦𝑦𝑁𝑁+𝑣𝑣+2 − 𝑦𝑦�𝑁𝑁+𝑣𝑣−1

ℎ=3      (3) 

𝑒𝑒𝑁𝑁+𝑣𝑣+3
ℎ=4 = 𝑦𝑦𝑁𝑁+𝑣𝑣+3 − 𝑦𝑦�𝑁𝑁+𝑣𝑣−1

ℎ=4      (4) 

The forecast step size is indicated by the letter h=1,…,4. N shows the last available 

observation in vintage #1, i. e. the third quarter of 2004. The number of vintages is 

given by ν = 1, …, 19.  

3.1 Vector Auto Regression (VAR) 

A VAR is a n-equation, n-variable linear model in which each variable is explained by 

its own lagged values plus current and past values of the remaining n - 1 variables; 
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see Stock & Watson (2001). A mathematical representation of a pth-order vector 

auto regression, denoted VAR(p), is: 

𝑦𝑦𝑡𝑡 = 𝑐𝑐 + Ф1𝑦𝑦𝑡𝑡−1 + Ф1𝑦𝑦𝑡𝑡−2 + ⋯+ Ф𝑝𝑝𝑦𝑦𝑡𝑡−𝑝𝑝 + ψ𝑥𝑥𝑡𝑡 + 𝜀𝜀𝑡𝑡 ,    (5) 

where 𝑦𝑦𝑡𝑡  is the (n x 1) vector of endogenous variables, 𝑥𝑥𝑡𝑡  is the vector of exogenous 

variables, Ф1 …Ф𝑝𝑝  and ψ are matrices of coefficients to be estimated, and 𝜀𝜀𝑡𝑡  is a 

vector of innovations which are i.i.d. N~(0; ∑). 

VAR models can be used for data description, forecasting, structural inference and 

policy analysis. They are a neutral way of observing interdependencies between 

variables since no structural assumptions – except the choice of the variables 

themselves and the lag length – are necessary. Therefore it can be regarded as a 

(economic-) theory-free way to capture dynamics in multiple time series. The same 

logic applies for forecasts made from VAR estimations.  

Due to the large number of parameters to be estimated, however, VAR models are 

often inefficient and suffer from over-parameterization and a low number of degrees 

of freedom.  

3.1.1 Stationary and Nonstationary Time Series – Unit Roots 

According to Wooldridge (2006, p. 381) a strictly stationary process is one whose 

probability distributions are stable over time in the following sense: “if we take any 

collection of random variables in the sequence and then shift that sequence ahead 

h time periods, the joint probability distribution must remain unchanged”; i.e. for 

every collection of time indices 1 ≤ 𝑡𝑡1  < 𝑡𝑡2 < ⋯ < 𝑡𝑡𝑚𝑚 , the joint distribution of a 

stochastic process (𝑥𝑥𝑡𝑡1 ,𝑥𝑥𝑡𝑡2 , … , 𝑥𝑥𝑡𝑡𝑚𝑚 ) is the same as the joint distribution of 

(𝑥𝑥𝑡𝑡1+ℎ , 𝑥𝑥𝑡𝑡2+ℎ , … , 𝑥𝑥𝑡𝑡𝑚𝑚+ℎ ) for all h ≥ 1. When times series exhibit unit roots they are non-

stationary, however.  
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The Augmented Dickey-Fuller (ADF) unit root tests in tables 12 - 24 in the appendix 

show strong evidence for unit roots in the levels of our data. First differences appear 

as stationary, however, with mixed results for inflation rates. Second differences do 

not show any indication for unit roots at all (see section 3.2 on cointegration for 

further theoretical considerations).   

To determine the optimal lag length of the VAR, I use the Akaike information criterion 

and the sequential modified likelihood ratio test statistic (LR) as suggested by Sims 

(1980); see tables 28 and 29. As in Gaggl et al. (2009) an optimal lag length of 2 is the 

result.  

3.1.2 VAR Estimation 

Given these results, I estimate an unrestricted VAR(2) in differences  

∆𝑦𝑦𝑡𝑡 = 𝑐𝑐 + Ф1∆𝑦𝑦𝑡𝑡−1 + Ф2∆𝑦𝑦𝑡𝑡−2 + ψ(L)∆𝑥𝑥𝑡𝑡 + 𝜀𝜀𝑡𝑡 ,    (6) 

with the following vector of eight endogenous variables,   

  ∆𝑦𝑦 = (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒ℎ,𝑑𝑑ℎ𝑒𝑒𝑒𝑒,𝑑𝑑𝑑𝑑𝑑𝑑,𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟, 𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟,𝑑𝑑𝑦𝑦𝑦𝑦𝑦𝑦,𝑑𝑑𝑦𝑦𝑦𝑦𝑦𝑦),   (7) 

with the oil price building the vector of exogenous variables,    

 

∆𝑥𝑥 = (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(−1),𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(−2)).     (8) 

 

It is common and often recommended to routinely take first differences of non-

stationary time series before estimation (as shown above). This, however, can result in 

a misspecified regression if important dynamic relations between the variables in 

levels are lost due to taking differences. The next section addresses this issue. 
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3.2 Structural Vector Error Correction Model (SVEC) 

The vector error correction model adds error correction terms and imposes long-run 

restrictions on the unrestricted VAR in differences. The SVEC model used in this paper 

is based on Gaggl, Kaniovski, Prettner, & Url (2009). 

3.2.1 Co-integration 

“Co-integration means that although many developments can cause permanent 

changes in the individual elements of 𝑦𝑦𝑡𝑡 , there is some long-run equilibrium relation 

tying the individual components together, represented by a linear combination ß′𝑦𝑦𝑡𝑡 .” 

Hamilton (1994, p.573)  

Or in the words of Granger (1987): “If each element of a vector of time series 𝑥𝑥𝑡𝑡  first 

achieves stationarity after differencing, but a linear combination ß′𝑥𝑥𝑡𝑡 is already 

stationary, the time series 𝑥𝑥𝑡𝑡  are said to be co-integrated with co-integrating vector 

ß.” 

Co-integrated models are based on the assumption that the endogenous variables 

are integrated of order one, I(1), meaning that they are non-stationary. In other 

words, a lot of economic time series behave like I(1) processes, i.e. they show an 

upward trend or drift, however, when compared with other variables they do not 

drift away from each other, i.e. are cointegrated. Several co-integrating vectors may 

exist within a multiple time series model. 

3.2.2  SVEC Model Estimation 

I apply the Johansen cointegration test to vintage set #19 which covers almost the 

full sample available and find six co-integrating relations – like Gaggle at al. (2009) 

do – according to the trace statistic (see Tables 30 and 31 in the appendix). The 

results from the trace test indicate six cointegrating relations, whereas the results from 

the maximum eigenvalue test indicate two relations. These results are only provided 



–  11  – 

   

as side-information, however, as I estimate the SVEC model in exactly  the same way 

as Gaggl et al. (2009) did. 

As can be seen in Gaggl et al. (2009, p.214), “steady-state conditions derived from 

economic theory as identifying restrictions for estimation of the cointegrating 

vectors” are used while short-term dynamics are entirely data-driven. 

The following equation shows a general vector error correction model: 

∆𝑦𝑦𝑡𝑡 = 𝑐𝑐 − Π𝑦𝑦𝑡𝑡−1 +∑ Γ𝑖𝑖∆𝑦𝑦𝑡𝑡−𝑖𝑖
𝑝𝑝−1
𝑖𝑖=1 +∑ ψ𝑖𝑖∆𝑥𝑥𝑡𝑡−𝑖𝑖

𝑝𝑝−1
𝑖𝑖=0 + 𝜀𝜀𝑡𝑡 ,   (9) 

 

where ∆𝑦𝑦𝑡𝑡  is the mx1 vector of endogenous variables in first differences and c is a   

mx1 vector of constants. Γ𝑖𝑖  are the mxm coefficient matrices describing the short-

term response to past variations in lagged endogenous variables, p is the order of 

the vector autoregressive process in levels, 𝜀𝜀𝑡𝑡  is an mx1 vector of innovations, i.i.d. 

N~(0; ∑) and ψi are the coefficient matrices of the lagged exogenous variable ∆𝑥𝑥𝑡𝑡. 

The matrix Π (Π=𝛼𝛼𝛼𝛼′) is the error correction mechanism if the elements of 𝑦𝑦𝑡𝑡  are 

integrated of order one and relates ∆𝑦𝑦𝑡𝑡  to past values of 𝑦𝑦𝑡𝑡 .  

3.2.3  Steady-State Conditions 

Additionally, Gaggl et al. (2009) derive steady-state relations from a dynamic open 

economy model which can also be used to get restrictions for the estimation of the 

co-integrating vectors of the SVEC model.2

The following part is identical to the representation in Gaggl et al. (2009, p. 213). The 

vector 𝑦𝑦𝑡𝑡 = (𝑚𝑚𝑡𝑡 ,𝑦𝑦𝑡𝑡 , 𝑖𝑖𝑡𝑡 ,∆𝑝𝑝𝑡𝑡 , 𝑖𝑖𝑡𝑡∗, (𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡𝑡∗), 𝑒𝑒𝑡𝑡 ,𝑦𝑦𝑡𝑡∗, ) includes the real money stock, real output 

levels of home and foreign, nominal interest rates, the inflation rate, the price 

differential between home and foreign, and the exchange rate. Given these 

 

                                                 
2 See the process of deriving steady-state conditions from a macroeconomic model in Gaggl et al. 
(2009, Chapter 2) or more detailed in Romer (2006). 
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variables, the steady-state equilibrium conditions suggest the following set of 

restrictions on the coefficients of matrix β containing the co-integrating vectors: 

    𝑚𝑚𝑡𝑡 − 𝛽𝛽22𝑦𝑦𝑡𝑡 + 𝛽𝛽23𝑖𝑖𝑡𝑡 = 𝑏𝑏10𝜉𝜉1𝑡𝑡+1     (10) 

    𝑖𝑖𝑡𝑡 − ∆𝑝𝑝𝑡𝑡 = 𝑏𝑏20 + 𝜉𝜉2𝑡𝑡+1      (11)

    𝑖𝑖𝑡𝑡 − 𝑖𝑖𝑡𝑡∗ = 𝑏𝑏30 + 𝜉𝜉3𝑡𝑡+1      (12)

    𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡𝑡∗ − 𝑒𝑒𝑡𝑡 = 𝑏𝑏40 + 𝜉𝜉4𝑡𝑡+1      (13)

    𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡∗ = 𝑏𝑏50 + 𝜉𝜉5𝑡𝑡+1      (14) 

 

where β’𝒚𝒚𝒕𝒕−𝟏𝟏 = 𝜉𝜉𝑡𝑡  with long-run equilibrium errors, 𝜉𝜉𝑖𝑖𝑖𝑖  𝑖𝑖 = 1,2, … ,5, having mean zero. 

Equations 10 - 14 feature 0 or 1 restrictions, except equation 10 that contains two free 

coefficients. All in all, the macroeconomic model proposes five long-run steady-state 

conditions. Gaggl et al. (2009) finally assume the following model structure: 

 

∆𝑦𝑦𝑡𝑡 = 𝛼𝛼β′c −  𝛼𝛼β′𝑦𝑦𝑡𝑡−1 +∑ Γi∆𝑦𝑦𝑡𝑡−𝑖𝑖
𝑝𝑝−1
𝑖𝑖=1 + ∑ ψ𝑖𝑖∆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡−𝑖𝑖 + 𝜀𝜀𝑡𝑡

𝑝𝑝−1
𝑖𝑖=0   (15) 

 

including all possible combinations of the potential long run restrictions and get the 

following matrix of cointegrating vectors  

 

𝛃𝛃’ = �
0 1 0
0 0 1
0 0 0

   0 0 0
   0 −1 0
   0 0 1

 0 −1
 0 0
−1 0

�.    (16) 

 

This means 24 restrictions are imposed on the matrix 𝛃𝛃. The 8 x 1 coefficient vectors ψ𝑖𝑖  

show the dynamic response of the system to current and previous changes in the oil 

price.  
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3.3 Bayesian Vector Auto Regression (BVAR) 

“Let 𝛤𝛤 be an (mx1) vector of parameters to be estimated from a sample of 

observations yt. Classical statistics assumes that there exists a true value for 𝛤𝛤𝑖𝑖 . This true 

value is regarded as an unknown but fixed number. An estimator 𝛾𝛾𝑖𝑖�  is constructed 

from the data, and 𝛾𝛾𝑖𝑖�  is therefore a random variable. In classical statistics, the mean 

and probability limit of the random variable 𝛾𝛾𝑖𝑖�  are compared with the true value 𝛾𝛾𝑖𝑖 .” 

Hamilton (1994, p. 35) 

In Bayesian statistics, however, the 𝛾𝛾𝑖𝑖  itself is regarded as a random variable. The goal 

of Bayesian statistical analysis is to describe the uncertainty about 𝛾𝛾𝑖𝑖  in terms of a 

probability distribution.  

Bayes’ law is the foundation of Bayesian statistics, 

     
𝑝𝑝(B|A) = 𝑝𝑝(A|B)p(B)

𝑝𝑝(A)       (17) 

 

where A and B are some random variables.  

For our purposes, let us replace A by y and B by 𝛤𝛤 to get: 

𝑝𝑝(𝛤𝛤|𝑦𝑦) =  𝑝𝑝(𝑦𝑦|𝛤𝛤)p(𝛤𝛤)
𝑝𝑝(𝑦𝑦)

.      (18) 

 

The term 𝑝𝑝(𝛤𝛤|𝑦𝑦) is called posterior density; the probability distribution function for the 

data given the parameters of the model, 𝑝𝑝(𝑦𝑦|𝛤𝛤), is referred to as the likelihood 

function and 𝑝𝑝(𝛤𝛤) as the prior; see Koop (2003, pp. 1-5). 

The prior does not depend on data, i.e. contains only non-data information 

available, it allows to be adjusted to our needs. Contrarily, empirical Bayesian 

methods often use data-based information to choose the prior.  
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3.3.1 BVAR Estimation 

According to Koop (2003) there is an ongoing debate about the importance of unit 

roots and cointegration in Bayesian analysis; see Koop (2003, p. 299) for discussion. 

Since no predominant Bayesian theory exists about that issue, I estimate a BVAR with 

the following vector of endogenous variables: 

𝑦𝑦 = (ℎ𝑒𝑒𝑒𝑒,𝑦𝑦𝑦𝑦𝑦𝑦, 𝑟𝑟𝑟𝑟𝑟𝑟,𝑝𝑝𝑝𝑝, 𝑟𝑟𝑢𝑢𝑢𝑢,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑒𝑒𝑒𝑒𝑒𝑒ℎ, 𝑦𝑦𝑦𝑦𝑦𝑦)    (19) 

and 

𝑥𝑥 = (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)      (20) 

as exogenous variable. I estimate the Bayesian VAR (BVAR) model with a random 

walk prior as described in Sims and Zha (1998) using the MSBVAR (Markov-switching 

Bayesian reduced form vector auto regression model setup and posterior mode 

estimation) package for R-software. The model for 𝑦𝑦 is: 

𝑦𝑦𝛷𝛷0 = 𝐶𝐶 +𝛷𝛷(𝐿𝐿)𝑦𝑦𝑡𝑡−1 + ψ(𝐿𝐿)𝑥𝑥𝑡𝑡 + 𝜀𝜀𝑡𝑡 ,    (21) 

where 𝑦𝑦𝑡𝑡−1 is the mx1 vector of observations, 𝛷𝛷(𝐿𝐿) is a mxm matrix polynomial of lag 

operator L with lag length p and nonnegative powers and  xt is the mx1 vector of  

the exogenous variable. C is a constant vector. The model can be rewritten in matrix 

form: 

𝐘𝐘𝚽𝚽𝟎𝟎 − 𝐗𝐗𝚽𝚽+ = 𝐄𝐄,     (22) 

where 𝐘𝐘 is a Txm matrix, 𝚽𝚽𝟎𝟎 is mxm, 𝐗𝐗 is Txk, 𝚽𝚽+ is kxm, and 𝐄𝐄  is Txm. 𝐗𝐗 contains the 

lagged 𝐘𝐘′s and a column of 1’s corresponding to the constant, T is the number of 

observations, m is the number of equations, and k = mp+1 is the number of 

coefficients corresponding to 𝐗𝐗. The conditional likelihood function in compact form 

can be written in the following way: 

𝐿𝐿(𝒀𝒀|𝚽𝚽)𝜶𝜶|𝚽𝚽𝟎𝟎|𝑻𝑻exp[−0.5𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐙𝐙𝐙𝐙)′(𝐙𝐙𝐙𝐙)]    (23) 

𝜶𝜶|𝚽𝚽0|𝑇𝑇exp[−0.5𝛟𝛟′(𝑰𝑰⨂𝒁𝒁′𝒁𝒁)𝛟𝛟]       
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Thereby 𝛟𝛟 has prior p.d.f. 

𝜋𝜋(𝛟𝛟) = 𝜋𝜋0(𝛟𝛟0)𝜑𝜑�𝛟𝛟+ − 𝜇𝜇(𝛟𝛟0);𝐻𝐻(𝛟𝛟0)�,    (24) 

where 𝜋𝜋0( ) is a marginal distribution of 𝛟𝛟 and 𝜑𝜑(· ; ∑) is the standard normal p.d.f. 

with covariance matrix ∑.  Combining (23) and (24) we get the posterior density 

function of𝛟𝛟: 

𝑞𝑞(𝛟𝛟) 𝛂𝛂 𝜋𝜋0(𝛟𝛟𝟎𝟎)|𝛷𝛷(0)|𝑇𝑇|𝐻𝐻(𝛟𝛟0|−
1
2         (25) 

× exp[−0.5(𝛟𝛟′
0(𝑰𝑰⨂𝒀𝒀′𝒀𝒀)𝛟𝛟0 − 2𝛟𝛟′

+(𝑰𝑰⨂𝑿𝑿′𝒀𝒀)𝝓𝝓0 +  𝛟𝛟′
+(𝑰𝑰⨂𝑿𝑿′𝑿𝑿)𝝓𝝓+ 

      +�𝝓𝝓+ − 𝜇𝜇(𝛟𝛟0)�′𝐻𝐻(𝛟𝛟0)−1(𝝓𝝓+ − 𝜇𝜇(𝛟𝛟0))]. 

For a more detailed discussion see Sims and Zha (1998, pp. 950 – 952). 

3.3.2 The Random Walk Prior 

The Litterman (1986) prior for a reduced form model suggests that a random walk 

model for each variable in the system is a reasonable assumption. As Sims and Zha 

(1998, p. 954) show “it suggests that beliefs about the reduced form coefficient 

matrix 

𝐁𝐁 = 𝚽𝚽+𝚽𝚽𝟎𝟎
−𝟏𝟏      (26) 

should be centered on an identity matrix for the top m rows and zeros for the 

remaining rows”. They make the conditional distribution for 𝚽𝚽+ Gaussian with mean 

of 𝚽𝚽0 in the first m rows and 0 in the remaining rows, or 

𝐸𝐸[�𝜱𝜱+|𝜱𝜱0] = �
𝜱𝜱0
0
⋮
0

�.     (27) 

Sims and Zha (1998, p. 954) assume “the prior conditional covariance matrix of the 

coefficients in 𝜱𝜱+ follows the same pattern that Litterman gave to the prior 

covariance matrix on reduced form coefficients.” This means, they make the 
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conditional prior independent across elements of 𝜱𝜱+ and with the conditional 

standard deviation of the coefficient on lag 𝑙𝑙 of variable j in equation i given by 

𝜆𝜆0𝜆𝜆1
𝜎𝜎𝑗𝑗 𝑙𝑙𝜆𝜆3

 .         (28) 

The hyperparameter λ0 stands for the overall tightness of the prior and controls the 

beliefs on 𝚽𝚽0, λ1 controls the standard deviation or tightness of the beliefs around the 

random walk prior, λ3 stands for the lag decay, i.e. the rate at which the prior 

variance shrinks with increasing lag length. The vector of parameters, 𝜎𝜎1, … ,𝜎𝜎𝑚𝑚 , 

contains scale factors. The last row of 𝜱𝜱+ corresponds to the constant term. Sims and 

Zha give it a conditional prior mean of zero and a standard deviation controlled by 

λ0λ4, where λ4 is a separate hyperparameter that controls the standard deviation or 

tightness around the intercept.  

 I use the MSBVAR program in R-software for the estimation of the model. Thereby, λ5 

controls the standard deviation or tightness around the exogenous variable, i.e. the 

oil price, 𝜇𝜇5 stands for the sum of coefficients, where larger values imply difference 

stationarity, and 𝜇𝜇6 is a drift parameter where larger values allow for common trends. 

I use the following values for lambdas  λ0 = 1, λ1 = 0.2, λ3 = λ4 = λ5 = 1, and 𝜇𝜇5 = 0, 

𝜇𝜇6 = 0.1 as suggested in Sims & Zha (1998) and lag length p=2. 
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4 Measures of forecast accuracy 

The most straightforward way to evaluate the accuracy of a forecast is to compare 

the forecast, 𝑦𝑦�𝑁𝑁+𝑣𝑣−1
ℎ , with the actual economic outcome, 𝑦𝑦𝑁𝑁+𝜈𝜈  (the realization). 

Ignoring the fact that a forecast can have an influence on the realized outcome 

(this question does not arise within the context of this paper), a forecast can be 

regarded as good if the degree of congruence is high.  

The following analysis covers the quarterly forecasts of the VAR, SVEC and BVAR 

models for the Eurozone and the US-American economy.  

The forecast accuracy is examined on the basis of different criteria which will be 

divided into three groups; see Baumgartner (2002, p. 194): 

1. Measures of statistical accuracy 

2. Theil coefficients, i.e. comparison with “naïve” forecasts 

3. Tests for the correct sign of the forecast and its significance 

For all measures of accuracy discussed the following relation holds: The smaller the 

value of the measure the better this model predicts real-time realizations. The mean 

forecast error (ME) shows the average deviation of the projected values (𝑦𝑦�𝑁𝑁+𝑣𝑣−1
ℎ ) 

from the actual (realized) values (𝑦𝑦𝑁𝑁+𝜈𝜈). Its value is close to zero if the forecast 

accuracy is high or if under- and overestimations cancel each other. A value close 

to zero indicates unbiased forecast values but information going beyond the 

direction of the forecasts is impossible to gather from the ME. Equation (29) shows the 

mean error of the one-step forecast level, where 𝑒𝑒𝑁𝑁+𝑣𝑣
ℎ=1 is derived from equation (1). 

Equation (30) shows the mean error on the four-step forecast level. 

𝑀𝑀𝑀𝑀ℎ=1 = 1
19
∑ (𝑒𝑒𝑁𝑁+𝜈𝜈

ℎ=1 )19
𝜈𝜈=1    𝜈𝜈=1,…,19 (29) 

⋮ 
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𝑀𝑀𝑀𝑀ℎ=4 = 1
19
∑ (𝑒𝑒𝑁𝑁+𝜈𝜈+3

ℎ=4 )19
𝜈𝜈=1     𝜈𝜈=1,…,19 (30) 

The mean absolute error (MAE) is calculated by taking the average of the absolute 

values of the forecast errors and allows statements about the overall forecast 

accuracy: 

𝑀𝑀𝑀𝑀𝑀𝑀ℎ=1 = 1
19
∑ �𝑒𝑒𝑁𝑁+𝑣𝑣

ℎ=1�19
𝜈𝜈=1    𝜈𝜈=1,…,19 (31) 

⋮ 

𝑀𝑀𝑀𝑀𝑀𝑀ℎ=4 = 1
19
∑ �𝑒𝑒𝑁𝑁+𝑣𝑣+3

ℎ=4 �19
𝜈𝜈=1    𝜈𝜈=1,…,19 (32) 

The mean squared error (MSE) also measures the accuracy of the forecast. Hereby 

the squares of the forecast errors are added and the average is taken. In contrast to 

the MAE the forecast errors do not enter the equation linearly but by the power of 

two. The MSE, therefore, puts more emphasis on large forecast errors: 

 

𝑀𝑀𝑀𝑀𝑀𝑀ℎ=1 = 1
19
∑ (𝑒𝑒𝑁𝑁+𝑣𝑣

ℎ=1)19
𝜈𝜈=1 ²   𝜈𝜈=1,…,19 (33) 

⋮ 

𝑀𝑀𝑀𝑀𝑀𝑀ℎ=4 = 1
19
∑ (𝑒𝑒𝑁𝑁+𝑣𝑣+3

ℎ=4 )19
𝜈𝜈=1 ²    𝜈𝜈=1,…,19 (34) 

 

The root mean squared error (RMSE) gives back a statistic that has the same 

dimension as the underlying variable: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ = √𝑀𝑀𝑀𝑀𝑀𝑀ℎ .     (35) 

It can be split up in two ways that allow further insight into the accuracy of the 

forecast errors. 

𝑈𝑈𝑈𝑈ℎ + 𝑈𝑈𝑈𝑈ℎ + 𝑈𝑈𝑈𝑈ℎ = 1    (36) 
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𝑈𝑈𝑈𝑈ℎ + 𝑈𝑈𝑈𝑈ℎ + 𝑈𝑈𝑈𝑈ℎ = 1    (37) 

The bias (UM), variance (US), and regression (UR) proportions should be small, while 

the co-variance (UC) and distribution (UD) proportions, respectively, should be close 

to 1 for a good forecast3

Variables with less variation are obviously easier to predict than those who are 

subject to wide variation. To take that into account I divided the RMSE by the 

corresponding variable’s realization’s standard deviation, 𝑆𝑆𝑆𝑆𝑦𝑦 , i.e. 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅/𝑆𝑆𝑆𝑆𝑦𝑦 . This 

measure allows easier comparison between different variables.  

. 

The Theil inequality statistics allow an easy interpretation as they are standardized to 

one. This statistic relates our forecast errors to “naïve” forecasts. In the case of the 

Theil W statistic, the “naïve” forecast is the hypothesis of “no change in the rate of 

change”, whereas the Theil U’s “naïve” forecast relates to the hypothesis of “no 

change in the level”. A Theil W or U value smaller than 1 indicates superiority of the 

model’s forecast over the “naïve” one. 

 

𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑊𝑊 = � ∑ �𝑒𝑒𝑁𝑁+𝑣𝑣+𝑖𝑖
ℎ �

219
𝜈𝜈=1

∑ (𝑦𝑦𝑁𝑁+𝜈𝜈−𝑦𝑦𝑁𝑁+𝜈𝜈−ℎ )²19
𝜈𝜈=1

  i=0,…,3 𝜈𝜈=1,…,19 (38) 

 

𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑈𝑈 = �∑ �𝑒𝑒𝑁𝑁+𝑣𝑣+𝑖𝑖
ℎ �

219
𝜈𝜈=1

∑ 𝑦𝑦𝑁𝑁+𝜈𝜈+ℎ−1
219

𝜈𝜈=1
  i=0,…,3 𝜈𝜈=1,…,19 (39) 

 

                                                 
3 See the methodological annex for a detailed explanation of these proportions. 
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The ratio of congruence (ER) is calculated as the ratio of correctly projected sign 

changes to all changes of direction based on a congruency table; see Baumgartner 

(2005, p. 205) and Bleymüller, Gehlert, & Herbert (2008). 

 

𝐸𝐸𝐸𝐸 = 𝑎𝑎+𝑏𝑏
𝑎𝑎+𝑏𝑏+𝑐𝑐+𝑑𝑑

      (40) 

 

ER is tested using a χ²-distributed test of independence with one degree of freedom. 

The null hypothesis states that the sign of the change of the forecast and the sign of 

the change of the realization are statistically independent. The χ² test statistic is 

defined as follows:  

χ² = (a+b+c+d)(ad−bc )²
(a+b)(c+d)(a+c)(b+d)

.    (41) 

 

Every ER is checked for statistical significance and marked by a star “*” when the 

corresponding p-value is below 0.10. In case of perfect sign prediction (c = 0 and d = 

0), the test statistic shows an undefined value (division by zero) and cannot be 

inserted into its probability distribution. For that case the corresponding entry in the 

tables will be “1.00“, meaning perfect sign congruence, without available statistical 

significance though. 
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5 Forecasting performance between 2004:Q4 – 2010:Q1 

The following section provides the results of the forecasting competition between the 

three models. As explained in section three, 19 one-, two-, three- and four-step 

ahead forecast errors were calculated for each model (see equations 1-4 as well as 

figure 1). These errors are now analyzed by applying the measures of forecast 

accuracy from section 4. 

The analysis of the forecasting performance will focus mainly on GDP, Eurozone 

inflation and the exchange rate, as these variables are of greater importance for 

economic researchers than the other variables (M1, price differential, and interest 

rates). 

5.1 One-step ahead forecasts 

As can be seen in table 2, the Bayesian VAR model clearly outperforms the 

unrestricted VAR model and the error correction model in predicting interest rates 

(rez, rus) and GDP levels (yez, yus). The same holds for the EUR/USD exchange rate 

with the BVAR showing superior performance in terms of Theil coefficients and other 

measures. 

The unrestricted VAR performs best at predicting Eurozone inflation rate and the 

price differential.  Only for the Eurozone inflation rate and the price differential the 

structural error correction model performs better than the BVAR. Furthermore, the 

SVEC model predicts worse than the unrestricted VAR model on every field. 

Concerning the sign test, the SVEC model performs better than the VAR for all 

statistical significant results, while BVAR performs better than the two other models for 

the Eurozone inflation rate. 
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Figure 2: One-step RMSE/SDy 

 

5.2 Two-step ahead forecasts 

Root mean squared errors for two-step forecasts partly increased by more than 50% 

compared to one-step results. 

Table 3 shows similar results as table 2. The Bayesian VAR exhibits lower RMSE values 

and lower Theil coefficients than the unrestricted VAR for three variables (rez, rus, 

yus). For the Eurozone GDP, however, the VAR model shows a slightly lower Theil 

coefficient of 0.641 versus 0.664 of the BVAR.  

The VAR model is the best model at predicting all four left hand side variables (dpez, 

exch, hez, pd). 

In table 3 the SVEC model again shows the weakest performance of all three 

models. It shows higher errors than the VAR for every forecasted variable. 

Concerning the correct sign of the forecasts, the BVAR outperforms both models with 

statistically significant results for inflation rate and Eurozone interest rates. The SVEC is 

the best sign predictor among all models for Eurozone GDP. 
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Figure 3: Two-step RMSE/SDy  

 

5.3 Three-step ahead forecasts 

Figure 4 shows RMSE/SDy results for three-step ahead forecasts. Again the values 

increased significantly compared to the previous step size. Root mean squared errors 

for GDP more than doubled compared to one-step results. 

The BVAR turns out to be the best model to predict both GDP levels and interest rates 

with a forecast step size of three. The BVAR is the only model that exhibits lower than 

one Theil coefficients for US-GDP forecasts, meaning that the other models add less 

information than the naïve forecasts. Concerning the correct sign, both VAR and 

SVEC show better results. 

For Eurozone inflation rates all three models exhibit Theil W coefficients higher than 

one, with VAR- and SVEC- models performing better than the BVAR, however. 
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Figure 4: Three-step RMSE/SDy 

 

5.4 Four-step ahead forecasts 

Also on the four-step level the structure among the variables stays the same, existing 

gaps widened however. Table 5 shows that the BVAR is superior to VAR and SVEC in 

forecasting GDP levels, while VAR and SVEC are superior at Eurozone inflation rate. 

Interestingly, four-step errors for the inflation rate are smaller than for the three-step 

level for all models. VAR and SVEC even exhibit Theil W coefficients lower than unity 

again. 

SVEC is the worst predictor for GDP levels in terms of accuracy, while it is the only 

model with 100% correct sign predictions. However, as the mean error (ME) shows 

SVEC under predicts GDP levels more than the two others. 
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Figure 5: Four-step RMSE/SDy 

5.5  Chapter summary 

Four specific patterns can be found after having observed and compared one-, 

two-, three-, and four-step forecast errors.  

• The Bayesian VAR is the best predictor for both GDP levels in terms of statistical 

accuracy. This holds in particular for US-GDP, while the unrestricted VAR can 

compete with BVAR for Eurozone GDP forecasts at eye level. Mean errors 

show that VAR and SVEC models under-predict GDP levels on average for the 

observed period. 

• VAR and SVEC are clearly superior to BVAR at predicting Eurozone inflation 

rate and the price differential. BVAR systematically under predicts dpez. VAR, 

however, outperforms SVEC on all step sizes. 

• While SVEC cannot compete with the two other models in terms of statistical 

accuracy, it shows the best results among all models at predicting the correct 

sign of GDP development. 

• SVEC Theil W coefficients for three- and four-step ahead GDP forecasts are 

above unity.  
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Table 2: One-step ahead forecast errors  

 

 

 

Vector Auto Regression

dpez exch hez pd rez rus yez yus
ME -0.001 -0.007 0.006 -0.001 0.003 0.002 -0.002 -0.004
MAE 0.003 0.035 0.017 0.006 0.005 0.008 0.006 0.006
MSE 0.000 0.002 0.001 0.000 0.000 0.000 0.000 0.000
RMSE 0.004 0.047 0.024 0.010 0.007 0.011 0.010 0.008

UM 0.03 0.02 0.05 0.00 0.13 0.03 0.04 0.20
US 0.17 0.10 0.02 0.03 0.18 0.23 0.01 0.03
UC 0.80 0.88 0.92 0.96 0.69 0.74 0.95 0.77
UR 0.10 0.30 0.12 0.32 0.37 0.48 0.08 0.00
UD 0.88 0.68 0.83 0.67 0.50 0.49 0.88 0.80

RMSE/SDR 1.036 0.636 0.437 0.945 0.673 0.801 0.443 0.572

Theil  W 0.890 0.621 0.522 0.992 0.727 1.015 0.618 0.660
Theil  U 0.615 0.154 0.074 0.295 0.218 0.287 0.133 0.080
ER 0.58* 0.53* 0.84 0.21 0.37 0.42 0.84* 0.84*

Bayesian Vector Auto Regression

dpez exch hez pd rez rus yez yus
ME -0.002 0.001 0.001 0.003 -0.001 -0.002 -0.001 -0.001
MAE 0.003 0.033 0.018 0.007 0.003 0.005 0.006 0.005
MSE 0.000 0.002 0.001 0.000 0.000 0.000 0.000 0.000
RMSE 0.004 0.045 0.025 0.011 0.005 0.008 0.009 0.007

UM 0.17 0.00 0.00 0.09 0.03 0.05 0.02 0.02
US 0.09 0.03 0.01 0.01 0.04 0.01 0.01 0.08
UC 0.74 0.97 0.99 0.90 0.93 0.94 0.97 0.91
UR 0.14 0.19 0.09 0.26 0.17 0.03 0.08 0.00
UD 0.69 0.81 0.91 0.65 0.80 0.92 0.90 0.98

RMSE/SDR 1.176 0.598 0.445 1.010 0.491 0.539 0.404 0.508

Theil  W 1.012 0.602 0.531 1.057 0.532 0.683 0.569 0.586
Theil  U 0.698 0.145 0.075 0.315 0.159 0.193 0.121 0.071
ER 0.84* 0.26 1.00 0.11 0.74* 0.58 0.89* 0.68

Structural Vector Error Correction Model

dpez exch hez pd rez rus yez yus
ME 0.000 -0.003 0.003 0.001 0.002 -0.004 -0.006 -0.004
MAE 0.003 0.038 0.018 0.006 0.005 0.008 0.008 0.006
MSE 0.000 0.003 0.001 0.000 0.000 0.000 0.000 0.000
RMSE 0.004 0.051 0.025 0.010 0.007 0.012 0.012 0.008

UM 0.01 0.00 0.01 0.01 0.06 0.09 0.29 0.23
US 0.07 0.11 0.06 0.04 0.22 0.16 0.01 0.02
UC 0.92 0.88 0.92 0.95 0.72 0.75 0.70 0.75
UR 0.21 0.34 0.19 0.35 0.42 0.40 0.06 0.01
UD 0.78 0.66 0.80 0.65 0.52 0.51 0.64 0.76

RMSE/SDR 1.115 0.684 0.452 0.975 0.640 0.827 0.513 0.584

Theil  W 0.960 0.687 0.539 1.024 0.691 1.040 0.704 0.674
Theil  U 0.662 0.166 0.076 0.304 0.207 0.297 0.154 0.081
ER 0.58* 0.47* 0.89* 0.21 0.37 0.79 0.89* 0.84*
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Table 3: Two-step ahead forecast errors  

 

 

 

Vector Auto Regression

dpez exch hez pd rez rus yez yus
ME -0.001 -0.013 0.013 -0.002 0.005 0.004 -0.004 -0.008
MAE 0.003 0.055 0.030 0.009 0.008 0.013 0.009 0.010
MSE 0.000 0.005 0.002 0.000 0.000 0.000 0.000 0.000
RMSE 0.004 0.070 0.040 0.013 0.011 0.017 0.014 0.015

UM 0.03 0.03 0.11 0.03 0.22 0.06 0.09 0.26
US 0.04 0.02 0.01 0.11 0.24 0.24 0.02 0.01
UC 0.94 0.95 0.88 0.87 0.54 0.69 0.90 0.72
UR 0.17 0.27 0.15 0.52 0.44 0.54 0.16 0.10
UD 0.80 0.69 0.74 0.45 0.34 0.40 0.75 0.64

RMSE/SDR 1.035 0.924 0.685 1.303 0.949 1.047 0.656 1.036
Theil  W 0.694 0.761 0.607 1.068 0.817 1.117 0.641 0.966
Theil  U 0.656 0.225 0.116 0.357 0.337 0.421 0.184 0.149
ER 0.53 0.47 0.89 0.26 0.32 0.37 0.84* 0.89

Bayesian Vector Auto Regression

dpez exch hez pd rez rus yez yus
ME -0.003 0.007 0.004 0.007 -0.003 -0.003 -0.002 0.000
MAE 0.004 0.061 0.033 0.012 0.006 0.009 0.010 0.009
MSE 0.000 0.006 0.002 0.000 0.000 0.000 0.000 0.000
RMSE 0.005 0.076 0.042 0.014 0.010 0.012 0.015 0.011

UM 0.42 0.01 0.01 0.23 0.09 0.07 0.01 0.00
US 0.11 0.00 0.00 0.02 0.01 0.04 0.01 0.10
UC 0.47 0.99 0.99 0.75 0.90 0.89 0.97 0.90
UR 0.04 0.28 0.15 0.36 0.19 0.04 0.18 0.02
UD 0.54 0.71 0.84 0.41 0.72 0.89 0.81 0.98

RMSE/SDR 1.295 1.008 0.719 1.478 0.796 0.781 0.679 0.781
Theil  W 0.864 0.873 0.643 1.207 0.683 0.840 0.664 0.727
Theil  U 0.821 0.245 0.122 0.405 0.283 0.314 0.190 0.113
ER 0.84* 0.16 1.00 0.11 0.79* 0.53 0.89* 0.58

Structural Vector Error Correction Model

dpez exch hez pd rez rus yez yus
ME -0.001 -0.008 0.009 0.002 0.002 -0.006 -0.013 -0.009
MAE 0.003 0.065 0.032 0.009 0.007 0.012 0.014 0.011
MSE 0.000 0.007 0.002 0.000 0.000 0.000 0.000 0.000
RMSE 0.005 0.083 0.041 0.013 0.010 0.016 0.020 0.016

UM 0.07 0.01 0.05 0.03 0.03 0.15 0.46 0.34
US 0.01 0.03 0.05 0.11 0.32 0.14 0.01 0.00
UC 0.93 0.95 0.90 0.86 0.65 0.70 0.53 0.66
UR 0.28 0.38 0.25 0.54 0.57 0.41 0.10 0.11
UD 0.65 0.61 0.70 0.43 0.40 0.44 0.44 0.55

RMSE/SDR 1.187 1.089 0.703 1.351 0.866 1.035 0.905 1.113
Theil  W 0.782 0.929 0.624 1.109 0.745 1.114 0.871 1.039
Theil  U 0.752 0.265 0.119 0.370 0.308 0.417 0.253 0.160
ER 0.58 0.37 1.00 0.16 0.47 0.74 0.95* 1.00
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Table 4: Three-step ahead forecast errors 

 

 

 

Vector Auto Regression

dpez exch hez pd rez rus yez yus
ME 0.000 -0.018 0.021 -0.004 0.007 0.003 -0.008 -0.013
MAE 0.004 0.067 0.045 0.010 0.010 0.014 0.014 0.015
MSE 0.000 0.006 0.003 0.000 0.000 0.000 0.000 0.000
RMSE 0.005 0.079 0.057 0.016 0.014 0.017 0.020 0.021

UM 0.00 0.05 0.14 0.05 0.24 0.04 0.16 0.42
US 0.01 0.01 0.01 0.16 0.18 0.12 0.01 0.01
UC 0.99 0.94 0.86 0.78 0.58 0.84 0.83 0.57
UR 0.38 0.18 0.20 0.65 0.41 0.44 0.21 0.14
UD 0.62 0.76 0.66 0.30 0.35 0.53 0.63 0.44

RMSE/SDR 1.265 0.999 0.926 1.757 1.065 1.000 0.953 1.442
Theil  W 1.004 0.826 0.696 1.296 0.809 0.951 0.720 1.136
Theil  U 0.760 0.247 0.159 0.438 0.414 0.450 0.254 0.210
ER 0.53* 0.47* 0.95 0.32* 0.21 0.26 0.84* 1.00

Bayesian Vector Auto Regression

dpez exch hez pd rez rus yez yus
ME -0.004 0.013 0.008 0.011 -0.005 -0.005 -0.002 0.001
MAE 0.005 0.075 0.050 0.016 0.009 0.012 0.015 0.011
MSE 0.000 0.009 0.004 0.000 0.000 0.000 0.000 0.000
RMSE 0.006 0.094 0.059 0.018 0.013 0.015 0.020 0.013

UM 0.45 0.02 0.02 0.35 0.14 0.10 0.01 0.01
US 0.08 0.00 0.00 0.02 0.00 0.09 0.01 0.09
UC 0.47 0.98 0.98 0.63 0.86 0.81 0.98 0.90
UR 0.14 0.33 0.23 0.39 0.20 0.03 0.27 0.07
UD 0.41 0.65 0.75 0.26 0.66 0.87 0.72 0.92

RMSE/SDR 1.567 1.188 0.958 1.969 1.009 0.886 0.954 0.916
Theil  W 1.249 1.000 0.729 1.436 0.762 0.859 0.726 0.721
Theil  U 0.941 0.294 0.165 0.491 0.392 0.399 0.254 0.133
ER 0.89* 1.00 1.00 0.11 0.74* 0.47 0.84* 0.37

Structural Vector Error Correction Model

dpez exch hez pd rez rus yez yus
ME -0.001 -0.010 0.015 0.004 0.000 -0.010 -0.022 -0.016
MAE 0.004 0.082 0.049 0.012 0.009 0.014 0.022 0.017
MSE 0.000 0.010 0.004 0.000 0.000 0.000 0.001 0.001
RMSE 0.006 0.098 0.060 0.017 0.013 0.019 0.029 0.023

UM 0.06 0.01 0.07 0.06 0.00 0.31 0.55 0.50
US 0.00 0.00 0.04 0.16 0.25 0.03 0.00 0.00
UC 0.94 0.99 0.90 0.78 0.75 0.66 0.45 0.50
UR 0.48 0.38 0.31 0.66 0.56 0.22 0.12 0.13
UD 0.46 0.60 0.62 0.28 0.44 0.47 0.33 0.37

RMSE/SDR 1.476 1.244 0.968 1.811 0.988 1.075 1.406 1.564
Theil  W 1.176 1.045 0.729 1.339 0.750 1.042 1.045 1.230
Theil  U 0.886 0.308 0.166 0.452 0.384 0.484 0.375 0.228
ER 0.68 0.37 1.00 0.11 0.53* 0.84* 0.95* 1.00
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Table 5: Four-step ahead forecast errors  

 

 

 

Vector Auto Regression

dpez exch hez pd rez rus yez yus
ME 0.000 -0.024 0.029 -0.005 0.007 0.001 -0.012 -0.019
MAE 0.004 0.073 0.055 0.010 0.011 0.014 0.017 0.019
MSE 0.000 0.007 0.005 0.000 0.000 0.000 0.001 0.001
RMSE 0.005 0.083 0.070 0.017 0.015 0.018 0.025 0.028

UM 0.01 0.09 0.17 0.08 0.22 0.00 0.22 0.49
US 0.02 0.02 0.00 0.21 0.08 0.03 0.01 0.00
UC 0.97 0.90 0.82 0.71 0.70 0.97 0.77 0.51
UR 0.32 0.18 0.21 0.69 0.33 0.31 0.29 0.24
UD 0.67 0.74 0.61 0.22 0.45 0.68 0.49 0.27

RMSE/SDR 1.205 1.063 1.054 2.057 1.060 0.937 1.290 1.924
Theil  W 0.718 0.903 0.714 1.310 0.738 0.805 0.817 1.311
Theil  U 0.750 0.255 0.187 0.460 0.446 0.465 0.324 0.276
ER 0.53 0.47* 1.00 0.32* 0.16 0.32 0.84* 1.00

Bayesian Vector Auto Regression

dpez exch hez pd rez rus yez yus
ME -0.005 0.019 0.012 0.014 -0.007 -0.007 -0.002 0.004
MAE 0.005 0.084 0.063 0.019 0.012 0.014 0.019 0.014
MSE 0.000 0.010 0.005 0.000 0.000 0.000 0.001 0.000
RMSE 0.007 0.099 0.073 0.021 0.016 0.018 0.024 0.016

UM 0.61 0.04 0.03 0.46 0.18 0.14 0.00 0.06
US 0.06 0.00 0.00 0.03 0.00 0.16 0.01 0.04
UC 0.32 0.96 0.97 0.51 0.82 0.70 0.99 0.90
UR 0.06 0.37 0.28 0.38 0.20 0.01 0.41 0.20
UD 0.33 0.59 0.69 0.16 0.62 0.84 0.59 0.75

RMSE/SDR 1.714 1.281 1.094 2.488 1.154 0.929 1.236 1.114
Theil  W 1.013 1.088 0.765 1.574 0.798 0.814 0.782 0.752
Theil  U 1.067 0.308 0.194 0.557 0.486 0.461 0.311 0.160
ER 0.95 0.05 1.00 0.05 0.79* 0.53 0.84* 0.26

Structural Vector Error Correction Model

dpez exch hez pd rez rus yez yus
ME -0.002 -0.010 0.024 0.006 -0.004 -0.016 -0.030 -0.022
MAE 0.004 0.091 0.061 0.014 0.012 0.017 0.030 0.022
MSE 0.000 0.011 0.006 0.000 0.000 0.001 0.001 0.001
RMSE 0.005 0.105 0.074 0.018 0.015 0.023 0.038 0.030

UM 0.16 0.01 0.10 0.11 0.06 0.49 0.62 0.56
US 0.00 0.00 0.03 0.20 0.12 0.00 0.00 0.00
UC 0.84 0.99 0.87 0.69 0.81 0.51 0.38 0.44
UR 0.36 0.45 0.33 0.68 0.46 0.10 0.15 0.21
UD 0.48 0.54 0.57 0.21 0.48 0.41 0.23 0.23

RMSE/SDR 1.430 1.349 1.113 2.141 1.106 1.243 1.955 2.087
Theil  W 0.842 1.150 0.758 1.373 0.768 1.089 1.225 1.421
Theil  U 0.890 0.324 0.198 0.479 0.465 0.617 0.491 0.299
ER 0.79 0.26 1.00 0.05 0.74* 0.89 1.00 1.00
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6 Forecast evaluation 

Within this section the differences between the forecast errors of all three models are 

analyzed. So far we have used measures of statistical accuracy to assess the 

forecasting performance. We saw that the Bayesian VAR and the unrestricted VAR 

produced better results than the structural vector error correction model for GDP 

prediction. On the other hand, the SVEC model and the unrestricted VAR performed 

better than BVAR at forecasting inflation rates, with mixed results for the EUR/USD 

exchange rate. Section 6.1 shows whether the notion of superiority and inferiority of 

one model over the other used in section 5 is interestingly large or not. Hence, the 

differences between the outcomes of the three models are assessed for statistical 

significance, e.g. are SVEC forecasts statistically significant worse predictors for GDP 

values than those of the other two models? 

6.1 Diebold Mariano test 

The Diebold Mariano test examines the difference between two forecasts. The null 

hypothesis of the test assumes equal accuracy of the two forecasts. Let 𝑒𝑒𝑡𝑡𝐴𝐴 and 𝑒𝑒𝑡𝑡𝐵𝐵 be 

the forecast errors of the same step size of models A and B. The loss function shall be 

𝑔𝑔�𝑒𝑒𝑡𝑡𝑖𝑖�, with i=A, B, where 𝑔𝑔 is the absolute value of the forecast errors. The Diebold 

Mariano test is based on the loss differential of 

  𝑑𝑑𝜈𝜈 =  𝑔𝑔(𝑒𝑒𝜈𝜈𝐴𝐴)− 𝑔𝑔(𝑒𝑒𝜈𝜈𝐵𝐵).      (42) 

The Diebold Mariano test statistic is  

𝐷𝐷𝐷𝐷 = 𝑑𝑑�

� 1
19 𝑉𝑉(𝑑𝑑�)

      (43) 

where  

𝑑̅𝑑 =
1

19
�𝑑𝑑𝜈𝜈

19

𝜈𝜈=1

                                                                         (44) 
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and 

𝑉𝑉�𝑑̅𝑑� =
1

19
�𝛾𝛾0 + 2�𝛾𝛾𝜏𝜏

ℎ−1

𝜏𝜏=1

�                                                             (45) 

where 𝛾𝛾𝜏𝜏 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑑𝑑𝜈𝜈 ,𝑑𝑑𝜈𝜈−𝜏𝜏). For a detailed discussion see Diebold & Mariano (1994). The 

present analysis uses the absolute errors as loss functions to examine whether 

statistically significant differences exist between the forecasts of the three models.  

The results in table 6 show that there is – according to the Diebold Mariano test – a 

statistically significant difference in the predicting accuracy for Eurozone GDP (yez) 

between the SVEC model and the VAR. The same holds for US-GDP, except for the 

one-step ahead forecast horizon. In other words, the null hypothesis of equal 

expected absolute errors can be rejected on the 5% level and we can conclude 

that VAR is superior to SVEC when it comes to GDP forecasting. The same holds for 

three- and four-step forecasts of the EUR/USD exchange rate and the price 

differential. 

The second part of table 6 shows the p-values from the Diebold Mariano test for the 

structural vector error correction model and the Bayesian VAR. With p-values above 

0.30 the null hypothesis of equal expected absolute errors cannot be rejected for US-

GDP forecast errors. This indicates that there is no statistically significant difference 

between SVEC and BVAR predictions for yus. Concerning Eurozone GDP, for one-, 

two- and three-step ahead forecasts the null of equal errors can be rejected on the 

5% level. No evidence for statistically different errors can be found for Eurozone 

inflation rates. 
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Table 6: Diebold Mariano Test 

 

 

The results from the Diebold Mariano test confirm the findings of section 5. When it 

comes to Eurozone GDP forecasts one can indeed speak of a statistically significant 

superiority of the VAR and the BVAR model over the structural error correction model. 

Concerning US GDP (yus) there is, however, no clear evidence that BVAR forecasts 

are more accurate than SVEC forecasts. The overall picture shows that VAR and 

SVEC deliver statistically significant different results regarding our variables of 

attention, whereas BVAR and SVEC results do not differ to the same extent but less.  

6.2 Forecast error evolution – Eurozone GDP  

Figure 6 shows the Eurozone GDP forecast error evolution over all 19 quarters for 

each step size separately (from left to right, from top to bottom). It can be clearly 

seen how the forecast errors started to increase in quarter 16 (2008:Q2) due to the 

disturbances of the financial crisis. While BVAR had the smallest mean errors of all 

three models in tables 2 – 5, figure 6 shows that this result is somehow misleading as 

VAR presents by far the smallest errors before the beginning of the financial crisis. To 

further analyze this issue section 7 provides an analysis for the pre-crisis data set only.  

 

SVECM vs. VAR

p-value dpez exch hez pd rez rus yez yus

1-step 0.407 0.390 0.107 0.845 0.891 0.946 0.001 0.612

2-step 0.159 0.124 0.010 0.000 0.419 0.826 0.000 0.000

3-step 0.039 0.039 0.000 0.001 0.647 0.991 0.000 0.000

4-step 0.057 0.015 0.000 0.012 0.937 0.689 0.000 0.000

SVECM vs. BVAR

p-value dpez exch hez pd rez rus yez yus

1-step 0.404 0.069 0.931 0.402 0.063 0.006 0.000 0.352

2-step 0.798 0.473 0.823 0.128 0.691 0.090 0.013 0.374

3-step 0.593 0.045 0.936 0.162 0.799 0.572 0.039 0.246

4-step 0.244 0.173 0.809 0.105 0.298 0.484 0.066 0.371
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No evidence can be found for an improvement of the forecasting performance with 

increasing estimation sample sizes over the time period. This holds for all graphs in 

subsection 6.2.  

 

 

Figure 6: 1-, 2-, 3- and 4-step forecast errors - Eurozone GDP 

 

Figure 7 shows the Eurozone GDP forecast error evolution of all step sizes for each 

model separately in one graph. One can see clearly how forecasts become more 

imprecise with higher forecast step-size.  

Figure 8 shows histograms of one-step forecast errors for the Eurozone GPD. Most 

errors are concentrated around unity. Again one can see that SVEC typically over-

estimates the GDP values. 
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Figure 7 : 1 – 4 step forecast errors from VAR, BVAR and SVEC – Eurozone GDP 
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Figure 8: Eurozone GDP one-step forecast error distribution for all three models 
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7 Forecasting performance between 2004:Q4 – 2008:Q2 

 

The following analysis is structured the same way as section five, ignoring however, 

the economic development after the recent financial and economic crisis had 

started with all its consequences on the data. The outbreak of the recent crisis can 

be regarded as a break point in the data, as well as an “abnormal” event, from the 

actual perspective at least.  

Only vintage sets #1 to #12 are within this new data horizon. The first one-step ahead 

forecasts predict 2004:Q4, the last ones 2007:Q3. The first four-step ahead forecasts 

predict values for 2005:Q3, while the last ones predict values for 2008:Q2 i.e. right 

before the outbreak (Lehman bankruptcy) of the (sub-prime) financial crisis that 

evolved into an economic crisis by the end of 2008. We will see that forecast errors 

become much smaller with the new pre-crisis data horizon. Furthermore, as figures 6 

and 7 already showed the ranking of the models changes. 

7.1 One-step ahead forecasts 

Figure 9 shows one-step root mean squared forecast errors divided by the standard 

deviation of the corresponding realizations. The SVEC model performs better than in 

figure 2. SVEC is the best predictor for the EUR/USD exchange rate and for the price 

differential before the financial crisis had started.  

Except for the inflation rate and exchange rate, variables show up to 50% smaller 

root mean errors and Theil coefficients in the ‘before the crisis’ statistics as compared 

to  statistics from section five. 

Except that, the basic structure of the results stays the same. Still the BVAR model is 

superior in predicting GDP levels and interest rates at the one-step level. On the other 
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hand, VAR and SVEC deliver better predictions for Eurozone inflation rate and the 

price differential. 

Mean errors in table 7 show how SVEC still over-predicts GDP development, while the 

sign of the forecasts is right 100% of time.  

 

Figure 9: One-Step RMSE/SDy - before the crisis 

 

7.2 Two-step ahead forecasts 

Table 8 indicates that BVAR is not the best predictor for GDP development anymore. 

The VAR model is superior to the other models in all terms of statistical accuracy. 

Furthermore, SVEC shows lower Theil coefficients than BVAR for US-GDP. Interestingly, 

Eurozone inflation rates are better predicted over two-steps than over one-step. In 

figure 10, the SVEC model loses all its number one positions from figure 9 to the VAR 

model. It performs better than BVAR for dpez, exch, pd and yus, however.  
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Figure 10: Two-step RMSE/SDy - before crisis 

 

7.3 Three-step ahead forecasts 

The VAR model delivers the best GDP forecasts at the three-step level. The same 

applies for Eurozone inflation and EUR/USD exchange rate. As table 9 shows, it is 

clearly the best performing model. 

The SVEC model performs better than BVAR for inflation rate, exchange rate, price 

differential and US GDP. Sign tests for the three most important variables (dpez, yez, 

yus) show good results for all models. 

 

Figure 11: Three-step RMSE/SDy - before crisis 
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7.4 Four-step ahead forecasts 

The VAR is by far the best predictor for both GDP development as well as for the 

exchange rate, Eurozone inflation and price differential in terms of all featured 

statistics. Theil coefficients, especially for Eurozone GDP are clearly below unity. 

Furthermore, VAR is the only model that exhibits mean errors below 0.01 for GDP 

values, indicating that it delivers unbiased forecasts, while BVAR systematically 

under-, and SVEC systematically over-predicts GDP values. 

SVEC shows the best sign prediction of all models except for the exchange rate. Its 

forecasts suffer from too high mean errors, however. 

 

Figure 12: Four-step RMSE/SDy - before crisis 
 
 

7.5 Chapter Summary 

The following specific patterns can be found for one-, two-, three-, and four-step 

ahead forecasts within the pre-crisis analysis. 

• The unrestricted VAR model is the best predictor for GDP levels on every step 

size, except for Eurozone GDP on the one-step level where BVAR exhibits lower 

errors. Behind the VAR no clear second position can be assigned since SVEC 

and BVAR show different rankings for every step size. A comparison of mean 
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errors shows, however, that SVEC over-estimates and BVAR under-estimates 

GDP development, while VAR exhibits mostly unbiased forecasts. 

• VAR and SVEC are the better models at forecasting Eurozone inflation rate on 

every step size. However, Theil W coefficients are close to unity on the one-

step forecast horizon and above unity at the three-step horizon. BVAR exhibits 

higher Theil coefficients and higher mean errors than the two other models. 

• The unrestricted VAR is a better predictor in terms of statistical accuracy than 

SVEC for every variable on every step size, except for EUR/USD exchange rate 

on the one-step horizon. 

• Root mean squared errors increase by up to 50% from each step to the next 

for all variables except the inflation rate. 
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Table 7: One-step ahead forecast errors - before crisis 

 

 

Vector Auto Regression

dpez exch hez pd rez rus yez yus
ME -0.001 -0.007 0.006 0.000 0.003 0.004 0.000 -0.001
MAE 0.003 0.024 0.011 0.004 0.003 0.006 0.004 0.004
MSE 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000
RMSE 0.003 0.032 0.017 0.005 0.004 0.007 0.005 0.006

UM 0.11 0.05 0.12 0.01 0.60 0.38 0.00 0.03
US 0.12 0.08 0.15 0.02 0.00 0.09 0.08 0.01
UC 0.77 0.87 0.73 0.98 0.40 0.53 0.92 0.96
UR 0.27 0.30 0.25 0.15 0.01 0.20 0.03 0.11
UD 0.62 0.64 0.63 0.85 0.39 0.42 0.97 0.86

RMSE/SDR 1.262 0.763 0.349 0.545 0.467 0.645 0.261 0.496

Theil  W 0.972 0.509 0.476 0.707 0.834 0.954 0.432 0.763
Theil  U 0.580 0.123 0.054 0.164 0.122 0.153 0.076 0.057
ER 0.67* 0.58* 0.92 0.08 0.33 0.42 1.00 1.00

Bayesian Vector Auto Regression

dpez exch hez pd rez rus yez yus
ME -0.002 -0.004 -0.001 0.003 0.000 0.002 0.002 0.002
MAE 0.003 0.025 0.012 0.005 0.002 0.002 0.004 0.005
MSE 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000
RMSE 0.004 0.031 0.017 0.006 0.002 0.003 0.004 0.006

UM 0.33 0.01 0.00 0.36 0.01 0.31 0.15 0.11
US 0.06 0.00 0.17 0.00 0.09 0.14 0.09 0.00
UC 0.62 0.99 0.83 0.64 0.90 0.55 0.76 0.89
UR 0.30 0.14 0.29 0.03 0.03 0.08 0.04 0.03
UD 0.37 0.84 0.71 0.62 0.96 0.61 0.81 0.85

RMSE/SDR 1.593 0.726 0.345 0.631 0.245 0.294 0.227 0.497

Theil  W 1.230 0.561 0.471 0.804 0.440 0.432 0.405 0.762
Theil  U 0.732 0.117 0.053 0.190 0.064 0.070 0.066 0.057
ER 1.00 0.25 1.00 1.00 0.92* 0.42 1.00 0.83

Structural Vector Error Correction Model

dpez exch hez pd rez rus yez yus
ME -0.001 -0.003 0.004 0.001 0.002 -0.001 -0.004 -0.002
MAE 0.002 0.024 0.012 0.004 0.003 0.004 0.005 0.005
MSE 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000
RMSE 0.003 0.030 0.017 0.005 0.003 0.005 0.006 0.006

UM 0.05 0.01 0.05 0.05 0.41 0.03 0.45 0.07
US 0.08 0.05 0.21 0.02 0.04 0.12 0.06 0.01
UC 0.87 0.94 0.74 0.93 0.55 0.85 0.48 0.92
UR 0.33 0.26 0.33 0.13 0.09 0.28 0.03 0.11
UD 0.62 0.73 0.62 0.82 0.50 0.69 0.52 0.82

RMSE/SDR 1.266 0.710 0.357 0.541 0.416 0.492 0.328 0.530

Theil  W 0.978 0.508 0.487 0.701 0.727 0.677 0.501 0.814
Theil  U 0.582 0.115 0.055 0.163 0.109 0.116 0.095 0.061
ER 0.58* 0.50* 1.00 0.08 0.33 0.83 1.00 1.00



–  42  – 

   

Table 8: Two-step ahead forecast errors - before crisis 

 

Vector Auto Regression

dpez exch hez pd rez rus yez yus
ME 0.000 -0.014 0.011 -0.001 0.006 0.008 0.001 -0.001
MAE 0.003 0.044 0.019 0.005 0.006 0.010 0.004 0.004
MSE 0.000 0.003 0.001 0.000 0.000 0.000 0.000 0.000
RMSE 0.003 0.051 0.027 0.007 0.007 0.012 0.005 0.006

UM 0.02 0.07 0.16 0.03 0.78 0.45 0.04 0.07
US 0.25 0.00 0.39 0.10 0.00 0.25 0.06 0.06
UC 0.73 0.93 0.45 0.87 0.22 0.30 0.90 0.88
UR 0.14 0.20 0.54 0.37 0.00 0.40 0.02 0.20
UD 0.84 0.73 0.30 0.60 0.22 0.16 0.95 0.73

RMSE/SDR 1.088 0.927 0.705 0.858 0.785 1.429 0.267 0.532
Theil  W 0.677 0.657 0.523 0.800 1.025 1.185 0.323 0.604
Theil  U 0.547 0.187 0.083 0.218 0.212 0.262 0.073 0.057
ER 0.67 0.50 1.00 0.08 0.33 0.25 1.00 1.00

Bayesian Vector Auto Regression

dpez exch hez pd rez rus yez yus
ME -0.003 -0.001 -0.002 0.008 0.000 0.004 0.005 0.006
MAE 0.004 0.048 0.023 0.009 0.003 0.005 0.006 0.007
MSE 0.000 0.003 0.001 0.000 0.000 0.000 0.000 0.000
RMSE 0.005 0.055 0.027 0.010 0.003 0.006 0.006 0.009

UM 0.50 0.00 0.00 0.57 0.02 0.36 0.57 0.44
US 0.11 0.03 0.45 0.00 0.31 0.07 0.10 0.00
UC 0.39 0.97 0.55 0.43 0.67 0.57 0.34 0.55
UR 0.08 0.16 0.65 0.06 0.15 0.00 0.06 0.04
UD 0.42 0.84 0.35 0.37 0.83 0.64 0.37 0.52

RMSE/SDR 1.544 0.996 0.725 1.226 0.394 0.695 0.326 0.794
Theil  W 0.981 0.849 0.554 1.134 0.500 0.590 0.406 0.896
Theil  U 0.776 0.201 0.085 0.312 0.107 0.128 0.089 0.085
ER 1.00 0.17 1.00 1.00 1.00 0.42 1.00 0.67

Structural Vector Error Correction Model

dpez exch hez pd rez rus yez yus
ME -0.001 -0.009 0.007 0.003 0.003 -0.002 -0.008 -0.004
MAE 0.003 0.047 0.021 0.005 0.003 0.007 0.008 0.006
MSE 0.000 0.003 0.001 0.000 0.000 0.000 0.000 0.000
RMSE 0.004 0.054 0.028 0.007 0.005 0.008 0.010 0.007

UM 0.06 0.03 0.07 0.16 0.42 0.04 0.72 0.23
US 0.17 0.00 0.50 0.07 0.04 0.42 0.04 0.05
UC 0.77 0.97 0.44 0.77 0.53 0.54 0.23 0.72
UR 0.24 0.21 0.66 0.30 0.12 0.66 0.02 0.19
UD 0.70 0.76 0.28 0.55 0.46 0.31 0.26 0.59

RMSE/SDR 1.189 0.979 0.731 0.887 0.532 0.954 0.492 0.676
Theil  W 0.690 0.773 0.543 0.835 0.693 0.811 0.544 0.771
Theil  U 0.597 0.198 0.086 0.226 0.144 0.175 0.134 0.072
ER 0.67 0.33 1.00 1.00 0.50 0.83 1.00 1.00



–  43  – 

   

Table 9: Three-step ahead forecast errors - before crisis 

 

 

Vector Auto Regression

dpez exch hez pd rez rus yez yus
ME 0.000 -0.020 0.014 -0.002 0.009 0.007 0.001 -0.005
MAE 0.002 0.054 0.032 0.006 0.009 0.014 0.006 0.007
MSE 0.000 0.003 0.002 0.000 0.000 0.000 0.000 0.000
RMSE 0.003 0.058 0.040 0.008 0.010 0.016 0.008 0.009

UM 0.00 0.12 0.12 0.06 0.80 0.20 0.03 0.27
US 0.06 0.07 0.50 0.22 0.00 0.17 0.07 0.14
UC 0.93 0.81 0.38 0.72 0.20 0.63 0.90 0.58
UR 0.26 0.03 0.72 0.53 0.01 0.58 0.01 0.33
UD 0.74 0.85 0.16 0.41 0.19 0.22 0.96 0.40

RMSE/SDR 1.152 0.839 1.528 1.076 1.085 2.040 0.371 0.878
Theil  W 1.004 0.702 0.632 0.787 1.100 1.108 0.322 0.695
Theil  U 0.486 0.203 0.122 0.244 0.280 0.341 0.097 0.083
ER 0.75* 0.33 0.92 0.08 0.17 0.25* 1.00 1.00

Bayesian Vector Auto Regression

dpez exch hez pd rez rus yez yus
ME -0.004 0.000 -0.005 0.012 -0.001 0.003 0.009 0.010
MAE 0.004 0.058 0.038 0.013 0.004 0.008 0.010 0.010
MSE 0.000 0.005 0.002 0.000 0.000 0.000 0.000 0.000
RMSE 0.005 0.072 0.042 0.014 0.005 0.009 0.011 0.012

UM 0.56 0.00 0.02 0.73 0.01 0.13 0.70 0.70
US 0.06 0.11 0.57 0.00 0.24 0.07 0.08 0.00
UC 0.37 0.89 0.41 0.26 0.75 0.79 0.23 0.29
UR 0.18 0.15 0.82 0.04 0.03 0.20 0.04 0.05
UD 0.26 0.85 0.16 0.22 0.96 0.66 0.26 0.25

RMSE/SDR 1.898 1.048 1.605 1.781 0.584 1.220 0.532 1.168
Theil  W 1.683 0.928 0.690 1.270 0.559 0.688 0.502 0.925
Theil  U 0.802 0.254 0.128 0.403 0.151 0.204 0.138 0.110
ER 1.00 1.00 1.00 1.00 0.92 0.33 1.00 1.00

Structural Vector Error Correction Model

dpez exch hez pd rez rus yez yus
ME -0.001 -0.011 0.009 0.005 0.002 -0.005 -0.013 -0.008
MAE 0.003 0.061 0.035 0.007 0.004 0.009 0.013 0.008
MSE 0.000 0.005 0.002 0.000 0.000 0.000 0.000 0.000
RMSE 0.003 0.069 0.042 0.009 0.005 0.013 0.015 0.011

UM 0.11 0.02 0.04 0.30 0.19 0.16 0.74 0.48
US 0.04 0.06 0.59 0.13 0.10 0.14 0.05 0.10
UC 0.85 0.91 0.37 0.57 0.72 0.70 0.20 0.42
UR 0.26 0.13 0.81 0.35 0.24 0.54 0.02 0.24
UD 0.63 0.85 0.15 0.35 0.58 0.30 0.24 0.28

RMSE/SDR 1.253 1.004 1.613 1.154 0.570 1.672 0.737 1.116
Theil  W 1.111 0.883 0.670 0.855 0.575 0.942 0.589 0.874
Theil  U 0.529 0.243 0.129 0.261 0.147 0.280 0.192 0.106
ER 0.83* 0.25 1.00 1.00 0.67 1.00 1.00 1.00
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Table 10: Four-step ahead forecast errors - before crisis 

 

 

 

Vector Auto Regression

dpez exch hez pd rez rus yez yus
ME 0.000 -0.037 0.014 -0.003 0.010 0.005 0.001 -0.007
MAE 0.003 0.065 0.039 0.006 0.010 0.016 0.006 0.007
MSE 0.000 0.005 0.003 0.000 0.000 0.000 0.000 0.000
RMSE 0.003 0.074 0.051 0.009 0.012 0.018 0.008 0.012

UM 0.01 0.25 0.08 0.09 0.81 0.07 0.03 0.37
US 0.09 0.18 0.66 0.44 0.00 0.08 0.00 0.23
UC 0.90 0.57 0.27 0.46 0.19 0.85 0.96 0.39
UR 0.29 0.00 0.87 0.68 0.02 0.73 0.02 0.43
UD 0.71 0.75 0.05 0.23 0.17 0.20 0.95 0.20

RMSE/SDR 1.188 0.876 3.711 1.219 1.313 2.165 0.417 1.526
Theil  W 0.673 0.758 0.659 0.661 1.068 1.040 0.305 0.806
Theil  U 0.515 0.241 0.155 0.237 0.319 0.399 0.096 0.114
ER 0.75 0.33* 1.00 1.00 1.00 0.42* 1.00 1.00

Bayesian Vector Auto Regression

dpez exch hez pd rez rus yez yus
ME -0.005 -0.007 -0.012 0.016 0.000 0.003 0.014 0.014
MAE 0.005 0.074 0.053 0.016 0.005 0.009 0.014 0.015
MSE 0.000 0.008 0.003 0.000 0.000 0.000 0.000 0.000
RMSE 0.006 0.087 0.055 0.017 0.006 0.012 0.015 0.016

UM 0.63 0.01 0.05 0.81 0.00 0.05 0.82 0.79
US 0.06 0.21 0.72 0.00 0.20 0.09 0.02 0.05
UC 0.31 0.79 0.23 0.19 0.80 0.86 0.17 0.17
UR 0.14 0.10 0.91 0.05 0.00 0.49 0.00 0.11
UD 0.22 0.89 0.04 0.14 1.00 0.46 0.18 0.10

RMSE/SDR 2.048 1.036 3.970 2.486 0.728 1.369 0.801 2.010
Theil  W 1.140 0.895 0.787 1.371 0.546 0.678 0.582 1.045
Theil  U 0.887 0.285 0.166 0.483 0.177 0.252 0.183 0.150
ER 1.00 1.00 1.00 1.00 1.00 0.42 1.00 0.25

Structural Vector Error Correction Model

dpez exch hez pd rez rus yez yus
ME -0.002 -0.020 0.009 0.007 0.000 -0.011 -0.018 -0.011
MAE 0.003 0.077 0.045 0.009 0.005 0.011 0.018 0.011
MSE 0.000 0.008 0.003 0.000 0.000 0.000 0.000 0.000
RMSE 0.004 0.089 0.054 0.010 0.006 0.018 0.019 0.015

UM 0.20 0.05 0.03 0.51 0.00 0.33 0.84 0.56
US 0.05 0.14 0.73 0.19 0.10 0.02 0.02 0.16
UC 0.75 0.81 0.24 0.30 0.90 0.64 0.14 0.28
UR 0.26 0.11 0.93 0.33 0.31 0.46 0.00 0.31
UD 0.54 0.84 0.04 0.16 0.69 0.21 0.16 0.13

RMSE/SDR 1.360 1.052 3.917 1.477 0.649 2.172 1.019 1.911
Theil  W 0.741 0.916 0.708 0.840 0.506 1.075 0.690 1.004
Theil  U 0.589 0.289 0.163 0.287 0.158 0.401 0.233 0.143
ER 1.00 0.08 1.00 1.00 1.00 1.00 1.00 1.00
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7.6 Comparison of the results 

• While the BVAR model is best at predicting GDP values on almost all forecast 

step sizes in the wide time span 2004:Q4 – 2010:Q1 including the recent 

financial crisis the unrestricted VAR shows the best performance for two-, 

three-, and four-step ahead Eurozone GDP forecasts before the crisis as well 

as the best performance on every step for US-GDP.  

• For both sample sizes holds, that VAR and SVEC predict Eurozone inflation 

rates and price differentials better than BVAR. Furthermore, the VAR predicts 

Eurozone inflation rates best for all step sizes in sections 5 and 7.  

• In section 5 Theil W coefficients of all models for Eurozone inflation were above 

unity at the two-step level indicating weak forecasts. In section 7, however, 

the same problem occurs on the three-step level. 

• Given the results of both sections, SVEC shows the best performance at 

delivering the correct sign of the forecasts. 
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8 Conclusion 

Table 11 shows how the ranking of the three models changes with the different 

forecast horizons. While the Bayesian vector auto regression performs best when 

predicting GDP evolution over the long time span 2004:Q4 – 2010:Q1 including the 

financial crisis (section 5), the unrestricted VAR shows the best performance over the 

short time span 2004:Q4 - 2008:Q2, with mixed results for one-step ahead forecasts 

only. The structural vector error correction model shows the highest forecast errors 

Table 11: Best performing model according to root mean squared errors 

 

of all three models regarding our variables of main interest, namely the Eurozone- 

and the U.S.-GDP, over both time spans. The Diebold Mariano test in section 6 mostly 

confirms these findings. According to it there is a statistically significant difference 

between BVAR and VAR forecast errors on the one hand and SVEC forecast errors 

on the other hand favoring the former. The SVEC model, however, turns out to be the 

best sign predictor for GDP movements in both sections. For both sample sizes holds 

that VAR and SVEC better predict Eurozone inflation rates than BVAR. Furthermore, 

sections 5 and 7 show how forecast errors (e.g. RMSE/SD_R) increase strongly with 

growing forecast step-size. 

2004:Q4 - 2010:Q1 dpez exch yez yus 

1-step ahead VAR/BVAR/SVEC BVAR BVAR BVAR 

2-step ahead VAR VAR VAR BVAR 

3-step ahead VAR VAR BVAR/VAR BVAR 

4-step ahead VAR / SVEC VAR BVAR BVAR 

     2004:Q4 - 2008:Q2 dpez exch yez yus 

1-step ahead VAR/SVEC SVEC BVAR VAR/BVAR/SVEC 

2-step ahead VAR VAR VAR VAR 

3-step ahead VAR/SVEC VAR VAR VAR 

4-step ahead VAR VAR VAR VAR 
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As Clements & Hendry (2008, p.3) showed, error correction models do “in fact not 

error correct when equilibria shift” but become equilibrium-correction models. These 

in-built equilibria, however, loose their validity after shifts have occurred. Therefore 

error correction models force “variables back to relationships that reflect the 

previous equilibria” –so they will ‘correct’ in an inappropriate way.  Notwithstanding 

the above, we see that the structural error correction model in our analysis performs 

worse than the two other models not only over the long time span including the 

possible equilibrium shift, but also over the second, shorter one.  

As a result, the main question to be asked is why two models without any underlying 

ecnomic theory can outperform the structural error correction model which 

incorporates long-run restrictions derived from a dynamic open economy model. 

One clearly has to rethink the process of obtaining the co-integration vectors and 

furthermore, has to question the underlying macroeconomic theory. This working 

paper shows that higher complexity and more effort devoted to a model need not 

necessarily make it a more successful tool when it comes to forecasting, in fact, in 

this case the opposite is true.  
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Methodological annex 

 

𝑃𝑃𝑡𝑡  forecast for year t, 

h forecast horizon (quarters) 

𝑅𝑅𝑡𝑡  realisation of year t, 

T number of observations. 

𝑠𝑠²𝑝𝑝 = 1
𝑇𝑇
∑ (𝑃𝑃𝑡𝑡 − 𝑃𝑃�)²𝑇𝑇
𝑡𝑡=1   variance of a forecast 

𝑠𝑠²𝑟𝑟 = 1
𝑇𝑇
∑ (𝑅𝑅𝑡𝑡 − 𝑅𝑅�)²𝑇𝑇
𝑡𝑡=1   variance of actual results 

𝑟𝑟 =
1
𝑇𝑇 ∑ (𝑅𝑅𝑡𝑡−𝑅𝑅�)(𝑃𝑃𝑡𝑡−𝑃𝑃�)𝑇𝑇

𝑡𝑡=1

𝑠𝑠𝑟𝑟𝑠𝑠𝑝𝑝
  correlation coefficient 

𝑈𝑈𝑈𝑈 = (𝑅𝑅𝑡𝑡���−𝑃𝑃𝑡𝑡���²)
𝑀𝑀𝑀𝑀𝑀𝑀

    bias proportion of the MSE 

𝑈𝑈𝑈𝑈 = (𝑠𝑠𝑟𝑟𝑠𝑠𝑝𝑝 )²
𝑀𝑀𝑀𝑀𝑀𝑀

   variance proportion of the MSE 

𝑈𝑈𝑈𝑈 = 2(1−𝑟𝑟)𝑠𝑠𝑟𝑟𝑠𝑠𝑝𝑝
𝑀𝑀𝑀𝑀𝑀𝑀

  covariance proportion of the MSE 

𝑈𝑈𝑈𝑈 = (𝑠𝑠𝑝𝑝 𝑟𝑟𝑠𝑠𝑟𝑟)²
𝑀𝑀𝑀𝑀𝑀𝑀

   regression proportion of the MSE 

𝑈𝑈𝑈𝑈 = (1−𝑟𝑟2)𝑠𝑠²𝑟𝑟
𝑀𝑀𝑀𝑀𝑀𝑀

    distribution proportion of the MSE 
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Appendix 
 

Table 12: ADF Test 
Null Hypothesis: EXCH_19 has a unit root  
Exogenous: Constant   
Lag Length: 1 (Automatic based on SIC, MAXLAG=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -2.632919  0.0886 

Test critical values: 1% level  -3.472813  
 5% level  -2.880088  
 10% level  -2.576739  
     
     *MacKinnon (1996) one-sided p-values.  

 
 

Table 13: ADF Test 
Null Hypothesis: HEZ_19 has a unit root  
Exogenous: Constant   
Lag Length: 5 (Automatic based on SIC, MAXLAG=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic  2.946464  1.0000 

Test critical values: 1% level  -3.473967  
 5% level  -2.880591  
 10% level  -2.577008  
     
     *MacKinnon (1996) one-sided p-values.  
     

 

Table 14: ADF Test 
Null Hypothesis: HUS_19 has a unit root  
Exogenous: Constant   
Lag Length: 1 (Automatic based on SIC, MAXLAG=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -1.503773  0.5292 

Test critical values: 1% level  -3.472813  
 5% level  -2.880088  
 10% level  -2.576739  
     
     *MacKinnon (1996) one-sided p-values.  
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Table 15: ADF Test 
Null Hypothesis: PD_19 has a unit root  
Exogenous: Constant   
Lag Length: 3 (Automatic based on SIC, MAXLAG=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -3.378496  0.0132 

Test critical values: 1% level  -3.473382  
 5% level  -2.880336  
 10% level  -2.576871  
     
     *MacKinnon (1996) one-sided p-values.  
     

 

Table 16: ADF Test 
Null Hypothesis: PEZ_19 has a unit root  
Exogenous: Constant   
Lag Length: 2 (Automatic based on SIC, MAXLAG=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -3.845362  0.0031 

Test critical values: 1% level  -3.473096  
 5% level  -2.880211  
 10% level  -2.576805  
     
     *MacKinnon (1996) one-sided p-values.  

 

Table 17: ADF Test 
Null Hypothesis: PUS_19 has a unit root  
Exogenous: Constant   
Lag Length: 4 (Automatic based on SIC, MAXLAG=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -3.165264  0.0241 

Test critical values: 1% level  -3.473672  
 5% level  -2.880463  
 10% level  -2.576939  
     
     *MacKinnon (1996) one-sided p-values.  

 

Table 18: ADF Test 
Null Hypothesis: REZ_19 has a unit root  
Exogenous: Constant   
Lag Length: 2 (Automatic based on SIC, MAXLAG=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -1.402792  0.5797 

Test critical values: 1% level  -3.473096  
 5% level  -2.880211  
 10% level  -2.576805  
     
     *MacKinnon (1996) one-sided p-values.  
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Table 19: ADF Test 
Null Hypothesis: RUS_19 has a unit root  
Exogenous: Constant   
Lag Length: 3 (Automatic based on SIC, MAXLAG=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -2.024713  0.2761 

Test critical values: 1% level  -3.473382  
 5% level  -2.880336  
 10% level  -2.576871  
     
     *MacKinnon (1996) one-sided p-values.  

 

Table 20: ADF Test 
Null Hypothesis: YEZ_19 has a unit root  
Exogenous: Constant   
Lag Length: 2 (Automatic based on SIC, MAXLAG=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -1.946623  0.3103 

Test critical values: 1% level  -3.473096  
 5% level  -2.880211  
 10% level  -2.576805  
     
     *MacKinnon (1996) one-sided p-values.  

 

Table 21: ADF Test 
Null Hypothesis: YUS_19 has a unit root  
Exogenous: Constant   
Lag Length: 1 (Automatic based on SIC, MAXLAG=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -1.306403  0.6259 

Test critical values: 1% level  -3.472813  
 5% level  -2.880088  
 10% level  -2.576739  
     
     *MacKinnon (1996) one-sided p-values.  
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Table 22: ADF Fisher Unit Root Test summary - levels 
Null Hypothesis: Unit root (individual unit root process)  
Series: EXCH_19, HEZ_19, HUS_19, PD_19, PEZ_19, PUS_19, REZ_19, 
        RUS_19, YEZ_19, YUS_19   
Automatic lag length selection based on SIC: 1 to 5 
Total number of observations: 1536  
Cross-sections included: 10   
     
     Method  Statistic Prob.** 
ADF - Fisher Chi-square  40.7201  0.0040 
ADF - Choi Z-stat -1.32578  0.0925 
     
     ** Probabilities for Fisher tests are computed using an asymptotic Chi 
        -square distribution. All other tests assume asymptotic normality. 

     
Intermediate ADF test results UNTITLED  
     
     Series Prob. Lag   Max Lag Obs 

EXCH_19  0.0886  1  13  155 
HEZ_19  1.0000  5  13  151 
HUS_19  0.5292  1  13  155 
PD_19  0.0132  3  13  153 

PEZ_19  0.0031  2  13  154 
PUS_19  0.0241  4  13  152 
REZ_19  0.5797  2  13  154 
RUS_19  0.2761  3  13  153 
YEZ_19  0.3103  2  13  154 
YUS_19  0.6259  1  13  155 

     
      
 

Table 23: ADF Fisher Unit Root Test summary - first differences 
Null Hypothesis: Unit root (individual unit root process)  
Series: EXCH_19, HEZ_19, HUS_19, PD_19, PEZ_19, PUS_19, REZ_19, 
        RUS_19, YEZ_19, YUS_19   
Automatic lag length selection based on SIC: 0 to 4 
Total number of observations: 1536  
Cross-sections included: 10   
     
     Method  Statistic Prob.** 
ADF - Fisher Chi-square  259.812  0.0000 
ADF - Choi Z-stat -12.5344  0.0000 
     
     ** Probabilities for Fisher tests are computed using an asymptotic Chi 
        -square distribution. All other tests assume asymptotic normality. 

     
Intermediate ADF test results D(UNTITLED)  
     
     Series Prob. Lag   Max Lag Obs 

D(EXCH_19)  0.0000  0  13  155 
D(HEZ_19)  0.0012  4  13  151 
D(HUS_19)  0.0000  0  13  155 
D(PD_19)  0.0113  2  13  153 

D(PEZ_19)  0.6297  1  13  154 
D(PUS_19)  0.1727  3  13  152 
D(REZ_19)  0.0000  1  13  154 
D(RUS_19)  0.0000  2  13  153 
D(YEZ_19)  0.0013  1  13  154 
D(YUS_19)  0.0000  0  13  155 
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Table 24: ADF Fisher Unit Root Test summary - second differences 
Null Hypothesis: Unit root (individual unit root process)  
Series: EXCH_19, HEZ_19, HUS_19, PD_19, PEZ_19, PUS_19, REZ_19, 
        RUS_19, YEZ_19, YUS_19   
Automatic lag length selection based on SIC: 0 to 6 
Total number of observations: 1522  
Cross-sections included: 10   
     
     Method  Statistic Prob.** 
ADF - Fisher Chi-square  834.238  0.0000 
ADF - Choi Z-stat -27.4439  0.0000 
     
     ** Probabilities for Fisher tests are computed using an asymptotic Chi 
        -square distribution. All other tests assume asymptotic normality. 

     
Intermediate ADF test results D(ADFDIFFSUMMARY,2) 

Series Prob. Lag   Max Lag Obs 
D(EXCH_19,2)  0.0000  1  13  153 
D(HEZ_19,2)  0.0000  6  13  148 
D(HUS_19,2)  0.0000  1  13  153 
D(PD_19,2)  0.0000  1  13  153 

D(PEZ_19,2)  0.0000  0  13  154 
D(PUS_19,2)  0.0000  1  13  153 
D(REZ_19,2)  0.0000  4  13  150 
D(RUS_19,2)  0.0000  3  13  151 
D(YEZ_19,2)  0.0000  0  13  154 
D(YUS_19,2)  0.0000  1  13  153 
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Table 25: Time Series (Vintage set #19) in levels 
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Table 26: Time Series (Vintage set #19) in first differences 
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Table 27: Time series PEZ (vintage #19) in second differences 

 

 

 
 

Table 28: Tests on lag length for VAR in differences 

Table 29: Tests on lag length for VAR in levels 
VAR Lag Order Selection Criteria       
Endogenous variables: DDPEZ_19 DEXCH_19 DHEZ_19 DPD_19 DREZ_19 DRUS_19 DYEZ_19 
DYUS_19    
Exogenous variables:  C DPOIL DPOIL(-1) DPOIL(-2)      
Date: 11/24/10   Time: 17:39       
Sample: 1970Q1 2009Q1       
Included observations: 152       

         
          Lag LogL LR FPE AIC SC HQ   
         
         0  4149.312 NA   4.10e-34 -54.17515  -53.53855* -53.91654   

1  4308.074  292.4573  1.18e-34 -55.42203 -53.51221  -54.64619*   
2  4398.744   157.4801*   8.39e-35*  -55.77295* -52.58992 -54.47990   
3  4438.118  64.24037  1.19e-34 -55.44892 -50.99267 -53.63863   
         
          * indicates lag order selected by the criterion      

 LR: sequential modified LR test statistic (each test at 5% level)     
 FPE: Final prediction error       
 AIC: Akaike information criterion       
 SC: Schwarz information criterion       
 HQ: Hannan-Quinn information criterion 
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VAR Lag Order Selection Criteria 
Endogenous variables: PEZ_19 EXCH_19 HEZ_19 PD_19 REZ_19 RUS_19 YEZ_19 YUS_19  
Exogenous variables: C  
Included observations: 155 

 Lag LogL LR FPE AIC SC HQ 
0  2019.078 NA   7.42E-22 -25.94940 -25.79232 -25.88559 
1  4375.146  4438.527  1.06E-34 -55.52446  -54.11074*  -54.95024* 
2  4460.244   151.5303*   8.15E-35*  -55.79670* -53.12634 -54.71206 

 * indicates lag order selected by the criterion 
 LR: sequential modified LR test statistic (each test at 5% level) 
 FPE: Final prediction error 
 AIC: Akaike information criterion 
 SC: Schwarz information criterion 
 HQ: Hannan-Quinn information criterion 

       

Table 30: Johansen Cointegration Test for levels 
Sample (adjusted): 1971Q2 2009Q1   
Included observations: 152 after adjustments  
Trend assumption: No deterministic trend (restricted constant) 
Series: EXCH_19 HEZ_19 HUS_19 PD_19 PEZ_19 REZ_19 RUS_19 YEZ_19 
YUS_19  
Lags interval (in first differences): 1 to 4  
Unrestricted Cointegration Rank Test (Trace)  
     
     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.346733  294.3401  208.4374  0.0000 

At most 1 *  0.344860  229.6232  169.5991  0.0000 
At most 2 *  0.252474  165.3414  134.6780  0.0002 
At most 3 *  0.212312  121.1115  103.8473  0.0022 
At most 4 *  0.176410  84.83628  76.97277  0.0111 
At most 5 *  0.142894  55.33567  54.07904  0.0384 
At most 6  0.096446  31.89820  35.19275  0.1087 
At most 7  0.068005  16.48253  20.26184  0.1530 

     
      Trace test indicates 6 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 
     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     

None *  0.346733  64.71696  59.24000  0.0132 
At most 1 *  0.344860  64.28176  53.18784  0.0026 
At most 2  0.252474  44.22992  47.07897  0.0978 
At most 3  0.212312  36.27521  40.95680  0.1532 
At most 4  0.176410  29.50061  34.80587  0.1876 
At most 5  0.142894  23.43747  28.58808  0.1982 
At most 6  0.096446  15.41568  22.29962  0.3418 
At most 7  0.068005  10.70504  15.89210  0.2744 

     
      Max-eigenvalue test indicates 2 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
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Table 31: Johansen Cointegration Test for first differences 
Date: 11/22/10   Time: 18:08     
Sample (adjusted): 1970Q4 2010Q1     
Included observations: 158 after adjustments    
Trend assumption: No deterministic trend    
Series: DPEZ_23 DEXCH_23 DHEZ_23 DPD_23 DREZ_23 DRUS_23 DYEZ_23 DYUS_23 DHUS_23   
Lags interval (in first differences): 1 to 1    

       
Unrestricted Cointegration Rank Test (Trace)    
       
       Hypothesized  Trace 0.05    

No. of CE(s) Eigenvalue Statistic Critical Value Prob.**   
       
       None *  0.546590  502.2206  179.5098  0.0000   

At most 1 *  0.439083  377.2493  143.6691  0.0000   
At most 2 *  0.405689  285.8966  111.7805  0.0000   
At most 3 *  0.356473  203.6808  83.93712  0.0000   
At most 4 *  0.347768  134.0357  60.06141  0.0000   
At most 5 *  0.176108  66.51366  40.17493  0.0000   
At most 6 *  0.113426  35.90651  24.27596  0.0011   
At most 7 *  0.095018  16.88479  12.32090  0.0081   
At most 8  0.007001  1.109972  4.129906  0.3400   

       
        Trace test indicates 8 cointegrating eqn(s) at the 0.05 level   
 * denotes rejection of the hypothesis at the 0.05 level   
 **MacKinnon-Haug-Michelis (1999) p-values    

       
Unrestricted Cointegration Rank Test (Maximum Eigenvalue)   
       
       Hypothesized  Max-Eigen 0.05    

No. of CE(s) Eigenvalue Statistic Critical Value Prob.**   
       
       None *  0.546590  124.9713  54.96577  0.0000   

At most 1 *  0.439083  91.35272  48.87720  0.0000   
At most 2 *  0.405689  82.21581  42.77219  0.0000   
At most 3 *  0.356473  69.64506  36.63019  0.0000   
At most 4 *  0.347768  67.52204  30.43961  0.0000   
At most 5 *  0.176108  30.60715  24.15921  0.0058   
At most 6 *  0.113426  19.02172  17.79730  0.0326   
At most 7 *  0.095018  15.77482  11.22480  0.0075   
At most 8  0.007001  1.109972  4.129906  0.3400   

       
        Max-eigenvalue test indicates 8 cointegrating eqn(s) at the 0.05 level   
 * denotes rejection of the hypothesis at the 0.05 level   
 **MacKinnon-Haug-Michelis (1999) p-values    
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