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ENHANCING MACROECONOMIC FORECASTS WITH
UNCERTAINTY-INFORMED INTERVALS

CHRISTIAN GLOCKER AND SERGUEI KANIOVSKI

Abstract. We propose a methodology for constructing confidence inter-
vals for macroeconomic forecasts that directly incorporate quantitative mea-
sures of uncertainty – such as survey-based indicators, stock market volatil-
ity, and policy uncertainty. By allowing the width of confidence intervals to
vary systematically with prevailing uncertainty conditions, this approach
yields more informative and context-sensitive intervals than traditional,
static methods relying solely on past forecast errors. An empirical ap-
plication using Austrian data demonstrates that uncertainty measures sig-
nificantly explain the variation in forecast errors, underscoring the value
of integrating these indicators for improved communication and analytical
robustness of economic projections.

JEL codes: C32; C53; C40; E37;
Key words: Confidence intervals; Forecast errors; Uncertainty; SUR

1. Introduction

We propose an approach for integrating quantitative uncertainty measures

– such as survey-based direct uncertainty indicators, stock market volatility,

and policy uncertainty metrics – into the construction of confidence intervals

for macroeconomic forecasts. In this framework, the width of the confidence

intervals changes with the prevailing levels of uncertainty indicators, result-

ing in wider intervals during periods of heightened uncertainty and narrower

intervals when uncertainty is low.

The motivation for this methodology is rooted in the persistent challenges

that characterize economic forecasting for both researchers and practitioners.

Forecast accuracy is frequently compromised by a range of factors, such as
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conflicting signals from various survey instruments, unforeseen and severe ex-

ogenous shocks, the endogenous policy responses that forecasts themselves may

provoke, as well as data revisions and broader data quality concerns. These

complexities often result in substantial forecast errors, which tend to attract

considerable media attention, particularly during periods of acute economic

crisis – precisely when accurate forecasts are most critical and errors are most

consequential.

In light of these challenges, many forecasting institutions have adopted the

practice of attaching confidence intervals to their economic projections.1 Typ-

ically, the construction of such intervals relies exclusively on the distribution

of past forecast errors, which are then appended, often mechanically, to the

current forecast to produce fan charts. These charts provide probabilities as-

sociated with different ranges of potential outcomes for the forecast variable.

The immediate objective of this approach is to contextualize the current fore-

cast within a probabilistic range derived from historical forecast errors (Razi

and Loke, 2017). Ultimately, the purpose of these intervals is to convey the

inherent uncertainty faced by forecasters when generating their predictions.

Despite being intended as a tool for quantifying forecast uncertainty, conven-

tional confidence intervals neglect to incorporate any quantitative measure of

uncertainty as perceived by economic agents, such as households or firms. This

omission is particularly surprising for at least two reasons. First, forecasters

indeed utilize household and business survey data in the process of generating

their predictions. Second, in many countries, these surveys feature specific

questions regarding uncertainty (see Glocker and Hölzl, 2022, for instance).

For example, since 1996, the Austrian Institute of Economic Research (Wifo)

has included in its business survey a question explicitly addressing firms’ per-

ceptions of (subjective) uncertainty:

Die zukünftige ENTWICKLUNG unserer Geschäftslage ist:
• leicht abschätzbar
• einigermaßen leicht abschätzbar
• einigermaßen schwer abschätzbar
• schwer abschätzbar

1See, for example, the Bank of England, the Institut national de la statistique et des études
économiques du Grand-Duché de Luxembourg (STATEC) as outlined in Kaniovski (2019),
the Czech National Bank, the Central Bank of Mexico, the Bank of Russia, the Bank of
Spain, or the Central Bank of Chile, among others.

https://www.bankofengland.co.uk/monetary-policy-report/2025/may-2025
https://www.cnb.cz/en/monetary-policy/forecast/
https://www.banxico.org.mx/publicaciones-y-prensa/informes-trimestrales/informes-trimestrales-precios.html
https://www.cbr.ru/eng/statistics/ddkp/mo_br/
https://www.bde.es/wbe/en/publicaciones/analisis-economico-investigacion/documentos-trabajo/constructing-fan-charts-from-the-ragged-edge-of-spf-forecasts.html
https://www.bde.es/wbe/en/publicaciones/analisis-economico-investigacion/documentos-trabajo/constructing-fan-charts-from-the-ragged-edge-of-spf-forecasts.html
https://si3.bcentral.cl/setgraficos/
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Translation: The future DEVELOPMENT of our business situation is:

easy to predict / moderately easy to predict / moderately difficult to predict

/ difficult to predict.

Intuitively, low uncertainty can arise both during expansions and recessions:

in the former, firms predominantly anticipate improvement; in the latter, they

largely expect deterioration. Business survey indicators – especially assess-

ments of the current situation and short-term expectations – are central in-

puts to economic forecasting. Their informational content, however, hinges

critically on the uncertainty embedded in respondents’ evaluations. Elevated

uncertainty diminishes the informational content of these indicators and en-

larges forecast errors, whereas low uncertainty enhances their informativeness

and improves forecast accuracy. Consequently, uncertainty measures provide

a systematic means to assess the quality of information conveyed by situa-

tion and expectation indicators. Given the pivotal role of these indicators in

forecasting, incorporating uncertainty measures can sharpen the delineation of

forecast corridors and more credibly capture the range of potential economic

outcomes.

In this context, we propose that the width of the confidence interval accom-

panying an economic forecast should be systematically adjusted to reflect the

prevailing level of subjective uncertainty as reported by households and firms.

To this end, we introduce a methodology for constructing confidence intervals

whose width varies with a quantitative measure of perceived uncertainty. This

approach allows the forecast to be more appropriately contextualized by incor-

porating information on the uncertainty environment at the time the forecast

is produced.

Literature. Contributions in this respect have been made by, among oth-

ers, Kannan and Elekdag (2009) who develop a procedure for incorporat-

ing market-based information into the construction of fan charts, and Hsieh

(2016) who too proposes the use of external indicators in adjusting the width

of forecast-related confidence intervals. Further related contributions include

Biswas (2019); Chourou et al. (2021); Morikawa (2023) all of which demon-

strate that forecast errors significantly vary with measures of uncertainty. Fur-

thermore, Wang et al. (2023) present an interval forecasting methodology in

the context of wind power, where the width of prediction intervals adjusts dy-

namically to time-varying correlations. Other contributions are, for instance,
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Turner (2017) who proposes a method to construct confidence intervals which

are parameterized on the basis of the historical forecasting track record, but

distinguish between a “safe” and “downturn-risk” regime.

Our approach extends prior contributions along several dimensions. First,

we introduce a framework for constructing uncertainty-dependent confidence

intervals that explicitly account for the forecast horizon, allowing the width

of the intervals to vary with the forecast horizon. Second, our methodology

incorporates the timing of forecast production, thus capturing the sensitivity

of forecast uncertainty to the specific point in the year when forecasts are

generated (given that many institutions, for instance the IMF, the OECD,

etc., produce at least two forecasts a year). Third, we systematically evaluate

a range of uncertainty measures and assess their informational value for ex-

plaining the historical variation in forecast errors. This allows to subsequently

determine their suitability as indicators for modulating the confidence interval

widths. Fourth, we investigate potential non-linearities in the relationship be-

tween uncertainty and forecast errors, and implement an estimation approach

that accommodates correlations among forecast errors across successive fore-

cast vintages and forecast horizons.

To empirically illustrate our approach, we focus on the Austrian economy,

leveraging forecasts published by the Austrian Institute of Economic Research

(Wifo). This context is particularly apt for two reasons. First, since 1996,

the institute has conducted (monthly) business surveys containing an explicit

question on uncertainty, offering a long time series of a direct subjective un-

certainty measure (see also Glocker and Hölzl, 2022). Second, over the same

period, four times a year, the institute has produced short-term economic

forecasts for both the current and following year (for the Austrian economy),

yielding a long time series of forecast errors. Historical forecast errors for

Austria have been comprehensively evaluated in Fortin et al. (2020). This

unique confluence of data enables us to rigorously investigate the statistical

relationship between forecast errors and measures of uncertainty.

The remainder of the text is organized as follows. Section 2 introduces

the methodology for integrating uncertainty measures into the construction of

forecast confidence intervals and presents empirical results. Section 3 extends
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the baseline approach by addressing non-linearities, evaluating alternative un-

certainty measures, and relaxing parameter constraints. Section 4 discusses

further extensions (some of which are implemented in the Appendix) and Sec-

tion 5 provides a use case for the proposed methodology. Section 6 concludes

the paper.

2. Methodological framework

Let yt+h|t denote the forecast of variable y for period t + h made at time t,

and let yt+h represent the realization of y in period t + h. The forecast error

εt+h|t for horizon h at time t (t = 1, . . . , T ) is then defined as:

(1) εt+h|t = yt+h|t − yt+h

and the variance of the forecast error at horizon h over the sample period is

calculated by:

(2) σ2
h =

1

T

T∑
t=1

ε2t+h|t

where we implicitly assume that 1
T

∑T
t=1 εt+h|t = 0, that is, the forecast errors

are mean zero.

The prevailing practice among forecasting institutions is to utilize the histor-

ical forecast error variance at horizon h to compute the corresponding standard

deviation (σh), which is then used to construct a confidence interval for the

forecast. Specifically, the (1 − α)% confidence interval (CI) for the forecast

yt+h|t is given by:

(3) CIUL (h) = yt+h|t ± κσh

where κ ≥ 0 is a critical value corresponding to the desired confidence level.

As indicated in equation (3), this approach determines the width of the con-

fidence interval solely based on the distribution of historical forecast errors,

disregarding potentially relevant external information available at time t when

the forecast is produced, that may influence forecast uncertainty and subse-

quent forecast error magnitudes.

The central innovation of this study is to introduce a quantifiable measure

of uncertainty – denoted ζt – to incorporate this measure into the construction
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of the confidence interval. We therefore extend equation (3) as follows:

(4) CIUL (h) = yt+h|t ± κσh(ζt)

where σh(ζt) explicitly denotes that the width of the confidence interval is a

function of the observed level of uncertainty at time t when the forecast is

produced.

2.1. Squared forecast errors and subjective uncertainty. To establish

a relationship between the forecast error variance σ2
h and the uncertainty in-

dicator ζt, we proceed in two steps. The key point here is that, rather than

using the average squared forecast error (σ2
h,m) as of equation (2), we employ

the time-specific squared forecast error (ε2t+h|t,m). In this respect, we first sub-

stitute σ2
h for the squared forecast error, ε2t+h|t, recognizing that ε2t+h|t may be

systematically related to the level of uncertainty ζt. To capture this relation-

ship empirically, we posit (as a starting point) a linear specification:

(5) ε2t+h|t = αh + β(ζt − ζ̄) + ut

where ζ̄ denotes the sample mean of the uncertainty indicator and ut is a

mean-zero error term. The subscript on the parameter αh indicates that its

value depends on the forecast horizon h considered in ε2t+h|t. Equation (5) can

be directly associated to the variance of the historical forecast errors put forth

in equation (2). To see this, we use equation (5) and operate with 1
T

∑T
t=1 on

both sides to obtain:

(6)
1

T

T∑
t=1

ε2t+h|t = αh = σ2
h

where the last equality follows from equation (2). This allows to rewrite equa-

tion (5) as follows:

(7) ε2t+h|t = σ2
h + β(ζt − ζ̄) + ut

Equation (7) defines a standard linear regression model that can be estimated

using standard techniques. Letting σ̂2
h and β̂ denote the point estimates of the

regression coefficients (constant term and the slope coefficient), the predicted

value for the squared forecast error is:

(8) ε̂2t+h|t = σ̂2
h + β̂(ζt − ζ̄)
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The predicted values ε̂2t+h|t can be readily used in equation (3). In particular,

we substitute the mean of the squared forecast errors ( 1
T

∑T
t=1 ε

2
t+h|t) with the

predicted values of the squared forecast error at a particular point in time t

(ε̂2t+h|t) as of equation (8). This adds a time-varying element to the width of

the confidence interval and equation (3) is now given by:

(9) CIUL (h) = yt+h|t ± κ

√
σ̂2
h + β̂(ζt − ζ̄)

where σ̂2
h ≥ 0 and β̂ ≥ 0 are expected. The latter reflects the positive relation-

ship between higher uncertainty and increased forecast errors. As equation (9)

makes explicit, when the observed uncertainty ζt exceeds its historical mean ζ̄,

the confidence interval widens, reflecting greater ex ante forecast uncertainty.

Conversely, when ζt falls below ζ̄, the confidence interval narrows accordingly.

Most importantly, this approach yields confidence intervals whose widths

vary deterministically over time t with realized levels of uncertainty, thus pro-

viding a more context-sensitive and informative characterization of forecast

uncertainty than is possible using traditional, static methods relying solely on

the variance of historical forecast errors (σ2
h).

2.2. Practical implementation. In the following, we outline a practical ap-

proach for the implementation of the proposed methodology, focusing in partic-

ular on equation (7), which forms the basis for the construction of confidence

intervals as detailed in equation (9). We illustrate our approach using the

Wifo forecasting process as an example. Given that multiple forecasts are

produced at distinct points throughout each year, we start to demonstrate

this procedure in the most parsimonious, that is, simplest, way possible. This

serves as the baseline model, providing a clear and tractable starting point. In

subsequent sections, this specification is progressively extended.

Each year, Wifo releases four forecasts (in March, June, September, and

December) for both the current year and the subsequent year. In principle,

this structure allows us to estimate equation (7) separately for each forecast

vintage, resulting in up to four potentially different estimates for the parameter

β for each forecast horizon h. However, in order to obtain a single, coherent

estimate for β across all forecast vintages, we extend the model to explicitly

account for the month m in which the forecast is made.
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Let us redefine the forecast error as:

(10) εt+h|t,m = yt+h|t,m − yt+h

where m = {M,J, S,D} indexes the forecast vintage (March, June, Septem-

ber, December) and t denotes annual data. Here, (t,m) signifies the instance

(month m of year t) in which a forecast for the year t + h is produced. In

the context of Wifo forecasts, we consider two horizons: h = 0 (current year)

and h = 1 (one year ahead) and we consider the first (official) data release for

yt+h.
2

We now generalize equation (7) to incorporate the month m of the forecast

vintage:

(11) ε2t+h|t,m = σ2
h,m + β(ζt,m − ζ̄) + ut,m

where σ2
h,m denotes the unconditional forecast error variance for horizon h and

month m, and ut,m is a mean-zero error term. The unconditional forecast error

variance is hence allowed to vary over the forecast horizon h and the forecast

vintage m and we expect that, for instance, σ2
0,D ≤ σ2

0,M , that is, the forecast

error variance for the current year’s forecast (h = 0) is smaller in December

(m = D) than in March (m = M).3 The uncertainty measure ζt,m employed

in this analysis is constructed from the Wifo monthly business survey,4 as

described earlier. This measure directly captures subjective uncertainty of

firms. We extend it to four separate time series at an annual frequency for each

forecast vintage m = {M,J, S,D}; for instance, ζt,M denotes the uncertainty

prevailing in March (m = M) of year t, with this value being the average

over the current and the two preceding months. The formulation proposed by

equation (11) allows the model to capture heterogeneity in the forecast error

variance that varies both across forecast horizons and forecast vintages, and

links it systematically to an uncertainty measure. For parsimony, we restrict

β to be invariant with respect to the forecast vintage and forecast horizon

(subsequently relaxed).

2Consider the Appendix for a discussion on the benefit of using first release data.
3More generally, we expect that σ2

h,m′ ≤ σ2
h,m for m′ > m and any h.

4Consider the appendix for further information on the direct subjective business uncertainty
measure.
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To jointly estimate the parameters across all forecast vintages (m), we cast

equation (11) in a multivariate system that encapsulates the four forecasts

released each year. For each forecast horizon (h), we consider the following

four-dimensional system:

(12) εh,t = σh + βζt + uh,t.

where the vectors are given by:

εh,t =


ε2t+h|t,M

...

ε2t+h|t,D

 , σh =


σ2
h,M

...

σ2
h,D

 , ζt =


ζt,M − ζ̄

...

ζt,D − ζ̄


and uh,t is assumed to follow a multivariate normal distribution with zero

mean and (possibly full) covariance matrix Σh. The dimension of the system

is defined by the number of forecasts produced per year (that is, the number

of forecast vintages, which is four in our case). Since equation (12) applies to

any forecast horizon h, we consider the stacked system for both h = 0 and

h = 1:

(13)

ε0,t
ε1,t

 =

σ0

σ1

+ β (12 ⊗ ζt) +

u0,t

u1,t


where 12 is a two-dimensional unit vector. The joint error term is assumed to

satisfy

(14)

u0,t

u1,t

 ∼ N (0,Σ), where Σ =

Σ0 Σ01

Σ10 Σ1


with Σ full and unrestricted.

A key advantage of the multivariate framework is its ability to easily impose

parameter restrictions. For instance, it enables the slope coefficient β to be

held constant across forecast horizons h and forecast vintages m, whereas in a

purely univariate setting, this coefficient would vary across h and m giving rise

to βh,m. In the following, we detail the estimation procedure for equation (13)

and highlight further advantages of the multivariate framework.

2.2.1. Estimation results. The system specified in equation (13) is estimated

using the Seemingly Unrelated Regressions (SUR) estimator, applied to data
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spanning from 1996 to 2019.5 This implies that we have 24 observations for the

forecast errors εt+h|t,m for each data vintage (m = {M,J, S,D}) and forecast

horizon (h = 0, 1) resulting in a total of 192 (= 24× 4× 2) observations. The

SUR estimator is well-suited for this multivariate set-up, as it captures the

strong contemporaneous correlation among error terms ut,m across equations

– reflecting both the temporal dependence across forecast vintages and across

forecast horizons. This is a notable feature in our context, given that the

forecast error associated with a particular month m in which a forecast is

produced for horizon h is likely to be carried over, at least in part, into the

subsequent month m+1 in which the next forecast for horizon h is produced.

The same applies to the cross-correlation in the error term over the forecast

horizons h = 0 and h = 1. In fact, empirical correlations among the error terms

ut,m often exceed 0.9, in case Σ is restricted to be diagonal, highlighting the

efficiency and necessity of the SUR methodology for this multivariate setting to

account for the strong contemporaneous correlations among the error terms.

Finally, the multivariate framework enhances the efficiency of estimating β

relative to a univariate setting, as in the former, all 192 observations are utilized

simultaneously.

We begin by discussing the results pertaining to the unconditional forecast

error variance, σ2
h, as defined in equation (2), and its corresponding SUR-based

estimates from equation (13), which are directly comparable. The former is

reported in the first numerical column6 of Table 1, while the latter appears in

the second column. As shown, the estimated variance σ2
h,m increases with the

forecast horizon h but decreases across forecast vintagesm; that is, σ2
1,m > σ2

0,m

for any m, and σ2
h,m > σ2

h,m+1 for any h. Overall, forecast errors and their

variances tend to increase with forecasting horizon. Forecasts for the current

year become more accurate as the year progresses, as quarterly and monthly

data gradually become available, while forecasts for the next year become more

accurate as we approach the next year.

5We have excluded Covid-19 and post-Covid-19 observations from the estimation sample
due to their excessive variance.
6In light of equation (6), which estimates the variance σ2

h as the sample mean of ε2t , a
simple t-test on the mean estimate indicates the following: σ2

0,M , σ2
0,J , σ

2
0,S , and σ2

0,D are

statistically different from zero at the 1% significance level; σ2
1,S and σ2

1,D are statistically

significant at the 5% level; and σ2
1,M and σ2

1,J are statistically significant at the 10% level.
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Table 1. Estimates for σ2
h,m and βh,m using firm uncertainty

Sample Baseline Restrict h Restrict m Unrestricted

β̂h,m = β̂ β̂h,m = β̂m β̂h,m = β̂h β̂h,m

σ̂2
0,M 0.62 0.69** 0.70** 0.62*** 0.61***

σ̂2
0,J 0.32 0.41 0.43 0.33*** 0.31***

σ̂2
0,S 0.21 0.31 0.32 0.23*** 0.22***

σ̂2
0,D 0.15 0.27 0.21* 0.17*** 0.17***

σ̂2
1,M 2.47 2.54** 2.55** 2.65** 2.74**

σ̂2
1,J 2.37 2.47** 2.49** 2.60*** 2.64***

σ̂2
1,S 1.82 1.90** 1.90** 2.04*** 1.99**

σ̂2
1,D 1.08 1.18*** 1.12** 1.34*** 1.17***

β̂0,M 0.048*** 0.054*** 0.011*** 0.009

β̂0,J 0.048*** 0.058*** 0.011*** 0.001

β̂0,S 0.048*** 0.050*** 0.011*** 0.008**

β̂0,D 0.048*** 0.026*** 0.011*** 0.009***

β̂1,M 0.048*** 0.054*** 0.107*** 0.156***

β̂1,J 0.048*** 0.058*** 0.107*** 0.126***

β̂1,S 0.048*** 0.050*** 0.107*** 0.084***

β̂1,D 0.048*** 0.026*** 0.107*** 0.044*

Test of coefficient (β̂) restrictions:
H0 Prob

β̂h,m = β̂m ∀ h 0.005***

β̂h,m = β̂h ∀ m 0.097*

β̂h,m = β̂ ∀ h ∧m 0.030**

Note: The table presents estimates of the unconditional variance (σ̂2
h,m)

of forecast errors and the slope-estimate (β̂) of distinct models. The
estimation uses a direct survey-based uncertainty measure collected
among manufacturing firms. Statistical significance levels are: 10%
(*), 5% (**), and 1% (***).

Table 1 presents the estimated values of β across a range of model specifica-

tions. In the baseline model (as specified in equation (13)), the estimate of β

is 0.048 and is statistically significantly different from zero at the one percent

level. This finding indicates that uncertainty explains part of the variation

in the squared forecast error; equivalently, forecast errors exhibit a tendency

to increase with rising levels of uncertainty. This result is broadly consistent

with the findings of Morikawa (2023). The central question that follows is

the extent to which this relationship alters the width of confidence intervals

associated with the forecasts, which we turn to next.

2.2.2. Implications for the confidence intervals. The β estimate obtained for

the baseline model (0.048) yields the following marginal effect of uncertainty
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on the width of the confidence interval:

(15)
∂CIUL (h,m)

∂ζt,m
= ±κ

β̂

2
√

σ̂2
h,m + β̂(ζt,m − ζ̄)

which evaluates to ±0.04 when κ = 1, ζt = ζ̄, and h = 0 for forecasts produced

in September (m = S). In practical terms, this result implies that the width

of the confidence interval for the current year’s GDP forecast (produced in

September) increases by 0.08 percentage points when the uncertainty indicator

rises by one index point.7

Figure 1 illustrates the application of uncertainty-dependent confidence in-

tervals to a (hypothetical) GDP growth forecast. In this example, the baseline

growth rate is set equal to the potential output growth rate of 0.5 percent p.a.,

reported across three periods: period t−1 (the most recent year with available

data), and periods t and t+1, for which forecasts are produced (corresponding

to forecast horizons h = 0 and h = 1). The forecasts are assumed to be pro-

duced in September (m = S). The figure compares the resulting confidence

intervals across two distinct uncertainty scenarios: a low-uncertainty case, de-

fined as the 25th percentile of the empirical distribution of the uncertainty

indicator (ζ = 39.4; black dashed lines, left panel), and a high-uncertainty

case, corresponding to the 75th percentile (ζ = 48.2; black dashed lines, right

panel). As a benchmark, the figure also presents confidence intervals for the

scenario in which the uncertainty measure equals its historical mean (ζt = ζ̄

where ζ̄ = 44.3), resulting in an interval based solely on the standard deviation

of historical forecast errors (black solid lines).

The figure underscores three key aspects. First, confidence intervals widen

as the forecast horizon h increases, a pattern that holds for any level of un-

certainty ζt (by construction). Second, the confidence intervals are sensitive

to changes in the level of uncertainty. Specifically, at low uncertainty, the

intervals are narrower than the benchmark intervals based exclusively on his-

torical forecast errors (see the left panel, where dashed lines are compared to

solid black lines). Conversely, under conditions of elevated uncertainty, the

intervals become noticeably broader than the benchmark (right panel). Third,

the influence of uncertainty is more pronounced for the current-year forecast

7The uncertainty measure (ζt) attains a minimum of 24.8, a maximum of 76.3, a mean of
44.3 and a standard deviation of 11.0 over the period 1996–2019.
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Figure 1. Confidence intervals for GDP growth forecasts (Baseline)
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Note: The black dashed lines in the panels show confidence intervals for GDP forecast (centered

at the potential output growth rate) for t (h = 0, red dots) and t + 1 (h = 1, blue dots) under

low (left panel) and high (right panel) uncertainty (25th and 75th percentiles). The solid black

lines indicate confidence intervals at the mean uncertainty level (ζt = ζ̄ = 44.3), which yields the

benchmark confidence interval according to equation (3).

(h = 0) than for the one-year-ahead forecast (h = 1). This differential impact

reflects the following

(16)
σ̂2
0,m

β̂(ζt,m − ζ̄)
<

σ̂2
1,m

β̂(ζt,m − ζ̄)

with the consequence that variations in the uncertainty measure ζt,m cause a

quantitatively larger effect on the width of the confidence interval for h = 0

than for h = 1.

3. Extensions

The preceding analysis was designed to present the conceptual framework

in a manner that is intentionally simple and transparent. However, achieving

this level of clarity necessitated the adoption of several strong and, at times,

implausible assumptions and restrictions. In what follows, we systematically

relax them and address three main elements: first, the parameter restrictions

regarding the partial effect of the uncertainty measure on the squared fore-

cast error; second, the linearity assumption embedded in equation (5); and
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third, the exclusive reliance on a single uncertainty measure, namely business-

level uncertainty, to the exclusion of additional measures such as household or

economic policy uncertainty.

3.1. Restricted versus unrestricted estimates for the uncertainty co-

efficient. The baseline approach assumes a fully restricted model in which

βh,m = β, that is, the effect of uncertainty on the forecast error is assumed to

be identical for both the current year (h = 0) and the next year (h = 1), and

invariant with respect to the forecast vintage (m). However, this restriction

may not be warranted in practice. Against this background, we extend the

analysis along two dimensions. First, we investigate whether the partial effect

of the uncertainty measure varies across the forecasting horizon, allowing for

β → βh, that is, distinct effects for the current-year and one-year-ahead fore-

casts. Second, we consider whether the partial effect differs by the month m

in which the forecast is made, so that β → βm.

To empirically assess these possibilities, we estimate the most general model,

which allows for variation in both dimensions, that is, β → βh,m. Under this

specification, equation (13) becomes:ε0,t
ε1,t

 =

σ0

σ1

+ vec(B)⊙ (12 ⊗ ζt) +

u0,t

u1,t

 ,(17)

where B =


β0,M β1,M

β0,J β1,J

β0,S β1,S

β0,D β1,D


Our primary interest lies in the estimates of the elements of the matrix B.

Estimation is again carried out using the SUR framework, with results reported

in Table 1 under the column labeled “Unrestricted”. Turning first to the

unconditional forecast error variances, we observe that the estimates for σ2
h,m

show only minor deviations from those in the baseline model. Importantly,

all variance estimates in the unrestricted specification are now statistically

significantly different from zero.

Turning to the estimates for the partial effects (βh,m), we find that all point

estimates are positive, as expected, but that their magnitudes vary consid-

erably across both forecast horizon h and forecast vintage m. For example,
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uncertainty appears to have little explanatory power for the (squared) forecast

errors of current-year forecasts (h = 0) produced in March (m = M) or June

(m = J). However, for forecasts for the next year (h = 1) made in these

same months, uncertainty significantly accounts for a portion of the variation

in the forecast errors. To formally assess these patterns, we employ a Wald

test of the null hypothesis that βh,m = β for all h and m. The results, shown

in the lower part of Table 1, indicate that this hypothesis is rejected at the

five percent level, supporting the more general model in which the effect of

uncertainty varies with both the forecast horizon h and the forecast vintage

m.

We further explore the structure of the partial effects by considering two

intermediate cases: variation only across forecast vintages (m) and variation

only across forecast horizons (h).

3.1.1. Variation over the forecast vintage (m). If the partial effects are allowed

to vary across the forecast vintages but not across the forecast horizons, so that

β → βm for m ∈ {M,J, S,D}, equation (17) simplifies to:

(18)

ε0,t
ε1,t

 =

σ0

σ1

+ (12 ⊗ b)⊙ (12 ⊗ ζt) +

u0,t

u1,t

 , where b =


βM

βJ

βS

βD


The lower part of Table 1 reports the results of a Wald test that compares the

above specification with the fully unrestricted model given by equation (17).

The corresponding null hypothesis, βh,m = βm for all h, is rejected at the one

percent significance level. The test therefore rejects the homogeneity of the

coefficients in the forecasting horizons h.

3.1.2. Variation over the forecast horizon (h). When allowing the partial ef-

fects to vary by forecast horizon, that is, β → βh for h ∈ {0, 1}, equation (17)

reduces to:

(19)

ε0,t
ε1,t

 =

σ0

σ1

+

β0 0

0 β1

⊗ ζt +

u0,t

u1,t


The corresponding Wald test results, reported in Table 1, examines the null

hypothesis, βh,m = βh for all m. This hypothesis is rejected at the ten percent
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level of statistical significance. The test therefore rejects the homogeneity of

the coefficients between forecasting vintages m.

The two Wald tests reject restrictions on the coefficient of the full model

given by equation (17). The fact that the restrictions on the vintages are only

weakly rejected suggests that there is more heterogeneity across forecasting

horizons than across forecasting vintages.

3.2. The role of non-linearities. The linear regression model proposed in

equation (5) carries the drawback that its predicted values for the squared fore-

cast error – a variable that is necessarily non-negative – may become negative.

This limitation motivates the exploration of non-linear alternative specifica-

tions that ensure the predicted values conform to the non-negativity constraint.

To address this, we consider a log-linear reformulation of equation (5) which

applies a logarithmic transformation of the squared forecast error. This yields

an exponential specification for the predicted quantity of interest. Specifically,

we model the log of the squared forecast error as:

(20) ln
(
ε2t+h|t,m

)
= αh,m + β(ζt,m − ζ̄) + ut,m

where ut is a again a mean-zero error term. The logarithmic transformation

guarantees that, when exponentiated, the predicted values are strictly non-

negative.

We reformulate the model within the multivariate system structure of equa-

tion (13) and re-estimate its parameters using the SUR approach to appro-

priately capture cross-equation correlation among the errors. The estimation

results, summarized in Table 2, indicate that the coefficient β is positive and

statistically significant at the one percent level. While the magnitude of β

is not directly comparable to its counterpart from the linear specification in

Table 2, the estimates for αh can be usefully contrasted. Specifically, when

ζt,m = ζ̄, it follows that ε̂2t+h|t = eα̂h,m = σ̂2
h,m. The findings reveal that the

estimates are quantitatively smaller in size but they still exhibit consistent

variation across forecast horizons and months; namely, we observe σ2
1,m > σ2

0,m

for all m, and σ2
h,m > σ2

h,m+1 for any given h, mirroring the patterns detected

in the original linear framework.

Finally, we examine the implications for the width of the confidence intervals,

as illustrated in Figure 2. This figure is constructed analogously to Figure 1,
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Table 2. Estimates of σ2
h,m = eαh,m and β using the log-linear specification

σ̂2
0,M σ̂2

0,J σ̂2
0,S σ̂2

0,D σ̂2
1,M σ̂2

1,J σ̂2
1,S σ̂2

1,D β̂

0.20*** 0.13*** 0.12*** 0.08*** 0.81 0.74 0.38** 0.30*** 0.034***

Note: The table presents estimates for the log-linear specification with σ̂2
h,m = eα̂h,m .

The estimation uses a direct survey-based uncertainty measure collected among man-
ufacturing firms. Statistical significance levels are: 10% (*), 5% (**), and 1% (***).

thereby enabling a direct comparison of the resulting intervals for the GDP

forecasts under both specifications. Our results show that the width of the

confidence interval is substantially smaller with the log-linear model compared

to the baseline. Most notably, although the uncertainty measure continues

to influence the width of the confidence interval, its impact is markedly re-

duced in the log-linear specification. As a result, the unconditional forecast

error variance (σ2
h,m) emerges as the dominant factor shaping the width of the

confidence intervals in this setting.8

Nevertheless, these findings underscore the robustness of the relationship be-

tween uncertainty and forecast error magnitude across alternative functional

forms. The log-linear transformation, in particular, is advantageous in prac-

tical applications, as it ensures the non-negativity of the dependent variable,

while on the other hand, the effect of the uncertainty measure on the width of

the confidence interval is limited.

3.3. Further uncertainty measures. The preceding models rely exclusively

on a firm-specific uncertainty measure derived directly from a business sur-

vey. We now broaden the empirical framework by incorporating alternative

sources of uncertainty: a household uncertainty measure derived from con-

sumer survey data, the VSTOXX and VIX indices as indicators of implied

stock market volatility and hence uncertainty as perceived by financial market

participants, and a policy uncertainty measure for Germany – Austria’s prin-

cipal trading partner – as constructed by Baker et al. (2016).9 Each metric

8We further explored a non-linear extension of equation (20) by including a quadratic term,

β̃(ζt − ζ̄)2, on the right-hand side. Although the estimated coefficient for β̃ is statistically
significantly different from zero, its magnitude is exceedingly small. As a result, the corre-
sponding confidence intervals are visually indistinguishable from those depicted in Figure 2.
Thus, while the quadratic term formally influences the width of the confidence interval, its
quantitative effect is negligible.
9We employ the German policy uncertainty index owing to the lack of equivalent measures
specifically for Austria.
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Figure 2. Confidence intervals for GDP growth forecasts (log-linear)
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Note: The black dashed lines in the panels show confidence intervals for GDP forecast (centered

at the potential output growth rate) for h = 0 (red dots) and h = 1 (blue dots) under low (left

panel) and high (right panel) uncertainty (25th and 75th percentiles). The solid black lines indicate

confidence intervals at the mean uncertainty level (ζt = ζ̄ = 44.3).

reflects a distinct, yet empirically relevant, dimension of economic uncertainty,

all of which have documented effects on both real GDP growth and the accu-

racy of macroeconomic forecasts (Camacho and Garcia-Serrador, 2014). The

household-specific measure is based on the perceived unemployment risk,10 as

obtained from a particular question in monthly consumer survey (European

Commission, 2025).

We estimate the extended model – incorporating these additional uncer-

tainty measures alongside the baseline measure – which gives rise to the fol-

lowing new specification of equation (11):

(21) ε2t+h|t,m = σ2
h,m +

5∑
k=1

βk(ζt,m,k − ζ̄k) + ut,m

where the ζt,m,k terms (∀ k = 1, ..., 5) refer to the five uncertainty measures

used. We estimate the extended model again using the SUR approach. The

estimation results are presented in Table 3. The estimates indicate that the

unconditional forecast error variances (σ2
h,m) exhibit only negligible changes

10Exact Formulation of the Question on Uncertainty derived from the perceived risk of job
loss (as per the official harmonized EU Consumer Survey): “How do you expect the number
of people unemployed in this country to change over the next 12 months? The number will:
increase sharply / increase slightly / remain the same / fall slightly / fall sharply / Don’t
know (N)”
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Table 3. Estimates of σ2
h,m and β using various uncertainty measures

Unconditional

variance (σ̂2
h,m) Slope coefficients (β̂k)

σ̂2
0,M 0.72** Firm uncertainty 0.043**

σ̂2
0,J 0.44 Household uncertainty 0.005

σ̂2
0,S 0.33 VSTOXX -0.035

σ̂2
0,D 0.27 VIX 0.072**

σ̂2
1,M 2.58** Policy uncertainty (DE) 0.008**

σ̂2
1,J 2.50***

σ̂2
1,S 1.91**

σ̂2
1,D 1.18**

Note: The table presents estimates for the baseline specification

(β̂h,m,k = β̂k ∀ k) using the baseline uncertainty measure (“firm uncer-
tainty”) and four additional ones: household uncertainty, stock market
uncertainty (VIX and VSTOXX) and economic policy uncertainty. Sta-
tistical significance levels are: 10% (*), 5% (**), and 1% (***).

compared to the baseline model. Importantly, in the extended specification,

all variance estimates have statistical significance similar to the baseline model.

Of greater importance are the estimated slope coefficients of the various

uncertainty measures. The partial effect of the baseline uncertainty measure

remains statistically significant at the five percent level and preserves its size

(by and large). In contrast, the partial effects of the household uncertainty

measure and the VSTOXX are not statistically distinguishable from zero, with

the latter even exhibiting a coefficient with an unexpected sign. Strikingly, the

estimates for the coefficients for the VIX index and the German economic pol-

icy uncertainty index are positive and statistically significantly different from

zero at the five percent level. Taken together, these results underscore both the

relevance of uncertainty measures in explaining movements in (squared) fore-

cast errors and the practical value of adjusting the width of confidence intervals

attached to forecasts in accordance with prevailing uncertainty conditions.

4. Alternative modeling approaches

Beyond the primary framework proposed in this study, alternative economet-

ric approaches are available for incorporating evolving uncertainty measures

into the modeling of forecast error variance and consequently the width of

confidence intervals. Two prominent methodologies are extensions of GARCH

models with exogenous regressors – commonly referred to as GARCH-X models
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– and stochastic volatility models with latent factor structures (see Hauzen-

berger et al., 2018, for instance) designed to reflect both observed and unob-

served sources of uncertainty.

GARCH-X models extend the standard GARCH specification by including

contemporaneous external indicators directly in the conditional variance equa-

tion. This enables a parsimonious and interpretable framework for capturing

the influence of, in our case, exogenous uncertainty shocks on forecast error

volatility. The mechanics and practical implementation of the GARCH-X ap-

proach are outlined in detail in the Appendix.

Alternatively, models with stochastic volatility (SV) combined with factor

structures offer a highly flexible environment for modeling volatility dynamics.

Such models can parsimoniously represent both common and idiosyncratic

volatility components associated with multiple uncertainty sources and allow

for richer volatility features than standard GARCH processes. The Bayesian

estimation techniques central to these approaches, as demonstrated in Kastner

and Hosszejni (2021), permit the modeling of latent volatility factors and their

attribution to macroeconomic or financial uncertainty proxies. This factor-

driven SV approach excels in capturing persistent and common movements in

volatility across series and in accommodating highly flexible latent volatility

dynamics.

Despite their conceptual appeal, a central impediment to the reliable imple-

mentation of both the GARCH-X and factor SV models is the limited number

of available observations. Macroeconomic forecasting datasets often span only

a few decades at best, and with multiple forecast vintages or series involved,

the resulting time series are short relative to the number of parameters to

be estimated – especially for the computationally intensive factor SV models.

This makes parameter estimation challenging, raises risks of overfitting, and

underscores the need for model parsimony or hierarchical shrinkage techniques

in practical work.

It should be emphasized that this list of modeling extensions is by no means

exhaustive. Additional promising avenues for future research include, for ex-

ample, the construction of asymmetric confidence intervals (Kaniovski, 2019),

which may better capture the asymmetric risks associated with severe eco-

nomic shocks.
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Figure 3. Use case: GDP (annual growth rate) forecasts of
March 2022 and March 2023
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Note: The figure displays the actual forecasts of annual GDP growth rates produced by Wifo in

March 2022 (covering 2022 and 2023) and March 2023 (covering 2023 and 2024), indicated by black

dots. Corresponding realized growth rates (first releases) are marked by x-shaped symbols. The

gray shaded areas depict benchmark confidence intervals derived from the variance of historic fore-

cast errors, while the red and blue dots along black dashed lines represent uncertainty-dependent

confidence intervals constructed using values for the three statistically significant uncertainty mea-

sures (see, Table 3) available at the time of each forecast.

5. Use case: Post-Covid-19 forecasting and uncertainty in

practice

We consider a use case to demonstrate the operation and implications of

uncertainty-dependent confidence intervals. The post-COVID-19 period pro-

vides an especially relevant context for this analysis, as it was characterized

by an extraordinarily high level of uncertainty. This uncertainty was shaped

by several factors, including geopolitical tensions, economic policy ambiguity,

and doubts regarding the steady supply of intermediate goods and energy. To

capture these dynamics, we analyze Wifo forecasts produced in March 2022

and March 2023. In each instance, forecasts were generated for the current

year as well as the subsequent year.

Figure 3 presents the forecasts for GDP growth: Black points plotted on

solid black lines indicate the point forecasts for 2022 and 2023 based on the

March 2022 forecast (left panel), and for 2023 and 2024 based on the March

2023 forecast (right panel). The gray shaded area represents the benchmark

confidence interval constructed from the variance of (historic) forecast errors,
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as detailed in the first numerical column of Table 1. The x-shaped markers in

each subplot denote the first official release of GDP data (annual growth rate).

Notably, the realized GDP growth rate falls outside the benchmark confidence

interval in all four cases. This indicates that the magnitude of forecast errors

was sufficiently large that confidence intervals based solely on historic forecast

error variances failed to capture the true economic outcomes.

In contrast, the uncertainty-dependent confidence intervals, depicted by red

dots (current year’s forecast, h = 0) and blue dots (next year’s forecast, h = 1)

along dashed black lines, paint a different picture. These intervals derive from

the approach presented in Section 3.3 and use the three statistically signifi-

cant uncertainty measures (see, Table 3). The modified intervals successfully

capture the realized GDP growth in three out of four cases: consistently for

the current year’s forecast, and once for the next year’s forecast.

5.1. Discussion. This improved performance is attributable to the model’s

accommodation of elevated uncertainty levels, stemming from firm-level volatil-

ity, economic policy unpredictability, and heightened stock market partici-

pants’ perceptions. By adapting the width of confidence intervals to contem-

poraneous uncertainty measures, the uncertainty-adjusted intervals provide a

more realistic representation of the inherent risks in economic forecasting dur-

ing turbulent periods. Such enhanced contextualization is particularly advan-

tageous for the communication of forecasts in times of heightened uncertainty,

as it tempers expectations and informs policy and market participants of the

broader range of plausible outcomes. Furthermore, this approach encourages

a more prudent interpretation of forecast data, reducing the risk of overconfi-

dence and facilitating better-informed decision-making under uncertainty.

5.2. Why not adjusting κ? A straightforward alternative would be to in-

crease the value of κ in the traditional approach (see, Equation (3)) uniformly

to widen the confidence intervals. Although this may improve coverage of

realizations, the approach has notable drawbacks:

• The widening is non-specific, i.e., independent of the actual uncer-

tainty level at the forecast time. During periods of low uncertainty –

and thus relatively low forecast difficulty – this results in unnecessarily
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wide intervals, diminishing the forecast’s informational value. Exces-

sively broad intervals in stable periods may create an impression of

imprecision, undermining the forecast’s credibility.

• A uniform adjustment of κ ignores the empirically observed hetero-

geneity of forecast errors associated with differing uncertainty levels,

thus discarding valuable time-specific information.

• Unlike the uncertainty-dependent approach, merely increasing κ lacks

a dynamic adaptation to changing economic conditions and fails to

achieve context-sensitive communication of forecast uncertainty.

For these reasons, an uncertainty-adjusted confidence interval is clearly su-

perior to a blanket adjustment of the critical value κ: it enables a more precise,

context-appropriate, and thus more credible representation of forecast uncer-

tainty. We regard this as the key advantage of the approach: it allows for

a clear and interpretable presentation of the inherent uncertainty forecasters

face and thereby significantly contributes to the assessment of the reliability

of economic forecasts.

6. Conclusion

This study introduces a simple yet effective procedure for integrating ex-

ogenous uncertainty measures into the construction of confidence intervals for

macroeconomic forecasts. The proposed framework results in intervals that

appropriately expand or contract with prevailing uncertainty, thereby enhanc-

ing the interpretability and credibility of forecasts. Empirical evidence from

Austrian data confirms that accounting for uncertainty – especially via survey-

based and policy indicators – explains the variation in forecast errors.

Importantly, the implementation of this approach is not confined to the

Austrian context. The increasing availability of high-frequency uncertainty

data, including survey-based indicators, in Germany and many other countries

(Rossi, 2020; Lautenbacher et al., 2021) enables direct application and empir-

ical evaluation of this methodology in a wide range of settings. This broad

applicability underlines the potential of uncertainty-dependent confidence in-

tervals as a transparent and robust tool for communicating the reliability of

macroeconomic forecasts across diverse institutional environments.
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The results highlight how uncertainty-dependent intervals can transparently

reveal the limitations and confidence levels of economic forecasts, giving users

clearer insight into prediction reliability.

Finally, it should be noted that uncertainty-dependent confidence intervals

are not meant to make inaccurate forecasts appear more favorable by artifi-

cially widening the intervals. Rather, they are meant to quantify the current

uncertainty and link it directly to the forecast. The endeavor to produce a

point forecast that is as close as possible to the eventual outcome, based on

the available data, and whose deviations (forecast errors) do not exhibit any

systematic patterns, should remain the central aspect of forecasting.
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Appendix A. garch modeling of forecast error variance with
an uncertainty measure

In the following, we consider a completely different approach to capture the

time-varying nature of forecast error volatility. We extend the baseline frame-

work by modeling the forecast error (εt+h|t) with a conditional heteroskedas-

ticity process. Specifically, we employ a GARCH(1) specification augmented

by the external uncertainty measure ζt, thereby allowing for a direct estima-

tion of the partial effect of uncertainty on the conditional variance (denoted

by σ2
t+h|t).

Let εt+h|t denote the forecast error at time t for horizon h, as previously

defined. We specify the following GARCH-model:

εt+h|t = σt+h|tzt, zt ∼ i.i.d. N(0, 1)(22)

σ2
t+h|t = ω + ρσ2

t+h−1|t−1 + γ(ζt − ζ̄)(23)

where ω > 0 is a constant, ρ ≥ 0 is the GARCH parameter measuring the

persistence of conditional variance, and γ captures the direct partial effect of

the (centered) uncertainty measure (ζt − ζ̄) on the conditional forecast error

variance.

Equation (23) extends the standard GARCH(1) model by adding an exoge-

nous regressor, (ζt − ζ̄), to the conditional variance equation, referred to as

GARCH(1)-X. The term σ2
t+h|t denotes the conditional variance of the forecast

error at horizon h given information available up to time t. It captures the

expected magnitude of the squared forecast error, allowing this expectation to

evolve dynamically over time according to historical volatility and contempo-

raneous economic uncertainty. This setup allows the conditional volatility of
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the forecast error to systematically respond to contemporaneous fluctuations

in observed uncertainty, after controlling for its own past shocks and past

volatility. This time-varying variance comprises an alternative approach for

constructing uncertainty dependent confidence intervals within the GARCH

approach.

The parameter γ directly quantifies the marginal contribution of changes

in the uncertainty measure to the (conditional) forecast error volatility. A

positive and statistically significant estimate for γ would suggest that height-

ened uncertainty – whether due to survey signals, financial market volatility,

or policy risks – translates immediately into higher forecast error variance and,

consequently, broader confidence intervals.

Estimation of this model can proceed via maximum likelihood, treating the

conditional variance equation as a standard GARCH(1) with exogenous co-

variates. The resulting time-varying conditional standard deviation, σ̂t+h|t,

can then be used in equation (3) to construct confidence intervals.

This approach provides both a flexible and empirically grounded method for

capturing the partial impact of uncertainty on forecast reliability through the

lens of dynamic volatility modeling.

A.1. Practical implementation. We again use the forecast errors of Wifo

εt+h|t,m for h = 0, 1 and m = {M,J, S,D}. To accurately reflect the structure

of the data, both the forecast error and the associated uncertainty measure

are indexed by the forecast horizon h and forecast vintage m.

As before, let εt+h|t,m denote the forecast error for period t+h, made at time

t in monthm ∈ {M,J, S,D}, and let ζt,m represent the value of the uncertainty

indicator for the corresponding month and year. The univariate GARCH(1)-X

model with an exogenous uncertainty regressor is then specified as follows:

εt+h|t,m = σt+h|t,m zt, zt ∼ i.i.d. N(0, 1)(24)

σ2
t+h|t,m = ωh,m + ρh,m σ2

t+h−1|t−1,m + γh,m (ζt,m − ζ̄m)(25)

Here, ωh,m and ρh,m are GARCH parameters which may vary by h and m and

γh,m measures the partial effect of the uncertainty measure, assumed flexible

across h and m.
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Table 4. Estimates of σ2
h,m and βh,m using GARCH(1)-X

Unconditional Slope

variance (σ̂2
h,m) coefficients (β̂h,m)

σ̂2
0,M 0.75 β̂0,M 0.048

σ̂2
0,J 0.36 β̂0,J 0.025

σ̂2
0,S 0.14 β̂0,S 0.014

σ̂2
0,D 0.10 β̂0,D 0.007

σ̂2
1,M 2.10** β̂1,M 0.067**

σ̂2
1,J 2.10* β̂1,J 0.067*

σ̂2
1,S 1.61** β̂1,S 0.053**

σ̂2
1,D 1.04 β̂1,D 0.045

Note: The table presents estimates for the GARCH(1)-X model us-
ing the baseline uncertainty measure (direct survey-based measure col-
lected among manufacturing firms). The values refer to the following
two transformed parameters: σ2

h,m =
ωh,m

1−ρh,m
and βh,m =

γh,m

1−ρh,m
. The

estimation is based on 24 observations for each forecast vintage and
horizon (1996 to 2019). Statistical significance levels are: 10% (*), 5%
(**), and 1% (***) and refer to the estimates of ωh,m for σ2

h,m and γh,m
for βh,m.

We estimate the time-varying conditional standard deviation, σ̂t+h|t,m, for

each forecast horizon h and forecast vintage m to construct confidence inter-

vals, as specified in equation (3).

The estimated coefficients are reported in Table 4. These coefficients have

been transformed to allow for direct comparison with the corresponding es-

timates from the unrestricted baseline model, as presented in the last col-

umn of Table 1. Specifically for the GARCH(1)-X model, we obtain σ2
h,m =

ωh,m/(1 − ρh,m) and βh,m = γh,m/(1 − ρh,m). The estimates for σ2
h,m are gen-

erally in line with those of the unrestricted baseline model. However, within

the GARCH(1)-X framework, most estimated parameters are not statistically

significantly different from zero (statistical significance indicated in Table 4 is

based solely on the estimates of ωh,m and γh,m), and the same holds for the

βh,m estimates. The reduced statistical significance likely reflects the smaller

effective sample size available for GARCH model estimation relative to the

system-wide estimation employed in the baseline model.

Figure 4 displays the resulting confidence intervals. The width of the bench-

mark confidence interval (where ζt = ζ̄) closely resembles that of the baseline
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Figure 4. Confidence intervals for GDP growth forecasts
(GARCH(1)-X)
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Note: The black dashed lines in the panels show confidence intervals for GDP forecast (centered

at the potential output growth rate) for h = 0 (red dots) and h = 1 (blue dots) under low (left

panel) and high (right panel) uncertainty (25th and 75th percentiles). The solid black lines indicate

confidence intervals at the mean uncertainty level (ζt = ζ̄ = 44.3).

model in Figure 1. Nevertheless, within the GARCH(1)-X framework, the in-

fluence of the uncertainty measure on the width of the interval remains mod-

est for both the current-year forecast (h = 0) and the one-year-ahead forecast

(h = 1).

Despite these limitations, the GARCH(1)-X modeling approach confers an

important advantage: it allows the volatility of forecast errors, and thus the

width of prediction intervals, to respond dynamically to both past dynamic of

forecast error volatility (the GARCH-effect) and the contemporaneous level of

exogenous uncertainty (the X-effect). This underscores the usefulness of the

GARCH-X model as an alternative methodology.

Appendix B. Further remarks

B.1. First release data versus final release data for GDP. An alter-

native to relying on the first release of GDP data to compute forecast errors,

would be to use, for example, the final available data vintage (Rülke et al.,

2016). However, this approach is associated with several important drawbacks.

Most notably, in the context of GDP and National Accounts statistics, truly

final data do not exist, as periodic revisions can extend many years or even
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decades into the past. As a result, the reference point for “final” data is itself

inherently fluid.

Moreover, the first release of GDP data – typically published around nine

months after the end of the respective year – offers key methodological advan-

tages. In particular, the use of first-release data facilitates the timely incor-

poration of definitional or methodological changes to GDP and the broader

data-generating process. This is a salient consideration, as substantial revi-

sions to National Accounts occurred in 2014, altering both the level and growth

rates of GDP. By benchmarking forecasts against first-release data, it is pos-

sible (in most cases) to ensure that forecast evaluation is consistent with the

definitions and classifications that were in place at the time the forecasts were

produced.

In contrast, employing the most recent data vintage for forecast evaluation

disregards contemporaneous changes in definitions and classifications, thus un-

dermining the comparability of forecast errors over time. Furthermore, fore-

casts cannot anticipate the effects of future changes to the System of National

Accounts (SNA), as these rely by necessity on the information available at the

time of forecast production. For these reasons, the use of first-release data

represents a more logically consistent and practically feasible basis for forecast

evaluation in the presence of evolving statistical standards.

B.2. The direct measure of subjective business uncertainty. The ques-

tion on uncertainty in the business survey was reworded in 2014. The original

wording was: “Die zukünftige ENTWICKLUNG unserer Geschäftslage ist • in

gewissem Maße abschätzbar • wenig abschätzbar • sehr unsicher • unsicherer

als je zuvor.” (Translation: The future development of our business situation

can be assessed to a certain degree / is difficult to assess / is very uncertain

/ is more uncertain than ever.) Given the limited length of the post-2014

subsample, it is not feasible to conduct an econometric analysis based solely

on the period covered by the revised wording. To construct a consistent long-

run series, we therefore merge the uncertainty indicators based on the old and

new survey formulations. Specifically, each measure is standardized within its

respective sub-period, after which the standardized series are concatenated to

form a unified time series of direct subjective uncertainty, spanning from the
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first quarter of 1996 to the second quarter of 2025. Further methodological

details are provided in Glocker and Hölzl (2022).

An equivalent uncertainty measure for manufacturing now exists for all EU

countries which is obtained within the EU’s monthly business survey. How-

ever, the specific question on business uncertainty was introduced for all EU

countries only in May 2021 (see European Commission, 2021, for instance),

meaning the resulting uncertainty indicator for all EU countries is available

for just over four years at this point (from May 2021 onward), although it is

available for some countries starting from April 2019. By contrast, Austria’s

uncertainty indicator is based on survey data that has been collected since

1996, offering almost 30 years of historical coverage up to 2025 (Hölzl et al.,

2025).
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