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Abstract

Model misspecification in multivariate econometric models can strongly
influence estimates of quantities of interest such as structural parameters,
forecast distributions or responses to structural shocks, even more so
if higher-order forecasts or responses are considered, due to parameter
convolution. We propose a simple method for addressing these specification
issues in the context of Bayesian VARs. Our method, called coarsened
Bayesian VARs (cBVARs), replaces the exact likelihood with a coarsened
likelihood that takes into account that the model might be misspecified
along important but unknown dimensions. Since endogenous variables in a
VAR can feature different degrees of misspecification, our model allows for
this and automatically detects the degree of misspecification. The resulting
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1 Introduction

When working with multivariate econometric models, challenges like measurement er-

rors, structural breaks, outliers, or non-Gaussian characteristics, including asymmetric

and fat-tailed errors, frequently arise. Overlooking these in the model formulation results

in misspecification. In a Bayesian framework, this suggests that the posterior distribu-

tion concentrates on the parameter value that reduces the Kullback-Leibler divergence

between the true data-generating process and the chosen model. Consequently, the esti-

mate found is essentially a pseudo-true parameter, which can be deceptive, especially if

misspecification is significant (see, e.g., Müller, 2013). Under such circumstances, poste-

rior uncertainty assessments, such as credible intervals, might become excessively narrow

around incorrect values, creating a false sense of certainty.

Especially in recessionary episodes or when large shocks hit the economy (e.g., the

global financial crisis or the Covid-19 pandemic), violations of the standard model as-

sumptions become prevalent. Moreover, selecting appropriate variables is necessary to

strike a balance between a large model, which might include many irrelevant predictors,

and a small tractable model, which could omit important information. These issues can

be partly addressed by making the model larger, more flexible, and non-Gaussian, but this

typically leads to substantial increases in computational complexity and risks overfitting

the data. For example, Cogley and Sargent (2005); Primiceri (2005); Kalli and Griffin

(2018); Huber, et al. (2020); Clark, et al. (in-press); Goulet Coulombe, et al. (2022);

Korobilis, et al. (2021); Karlsson, Mazur, and Nguyen (2023); Huber and Koop (2024)

propose models that allow for time-variation and nonlinearities in the conditional mean,

the conditional variance, or both. These methods often outperform their linear coun-

terparts in terms of reliability of estimation and predictive accuracy. However, they are

difficult to tune and the computational burden increases markedly with the size of the

dataset. Similarly, to address the omitted variable problem, it is common to rely on factor

models (e.g., Stock and Watson, 2002; Bernanke, Boivin, and Eliasz, 2005; Kaufmann and

Schumacher, 2019) or large Bayesian VARs (see, e.g., Bańbura, Giannone, and Reichlin,
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2010; Koop, 2013; Chan, 2022; Gefang, Koop, and Poon, 2023). However, factor models

require the selection of the number of factors and call for filtering techniques to estimate

the latent factors. Large VARs, on the other hand, are often specified to be linear and

homoskedastic. Both assumptions are necessary to retain conjugacy and thus enable fast

estimation, but could be unrealistic. And one could introduce a separate stochastic pro-

cess to capture measurement errors (see, e.g., Cogley and Sargent, 2015), but doing so

requires knowledge of the nature of the measurement error and is thus not easy to apply

in general.

In summary, while there exist methods to handle specific types of misspecification of

standard, simple, econometric models, these methods are not commonly used in practice,

due to their complexity and computational costs, in addition to the fact that the type of

misspecification is often unknown. Small, linear, Gaussian econometric models, such as

vector autoregressions (VARs), remain the workhorse of applied macroeconomists.

There is also a literature on robust estimation of VARs and Bayesian VARs (BVARs).

For instance, Schorfheide (2005) analyzes multi-step-ahead forecasting with VARs un-

der a dynamically misspecified data generating process (DGP). More recently, González-

Casasús and Schorfheide (2025) propose setting the hyperparameters of a Bayesian VAR

using robust loss functions that can be tailored to the specific application at hand (i.e.

whether the focus is on using the VAR for forecasting or structural inference).

Our objective in this paper is to modify BVARs to make them more robust to general

and unknown forms of misspecification, without changing the simple model specification

and retaining computational simplicity and efficiency. We build on a recent paper, Miller

and Dunson (2018), and propose a robust version of a conjugate VAR. We call this model

coarsened Bayesian VAR (cBVAR). The cBVAR replaces the exact likelihood with a

coarsened likelihood that takes general and unknown forms of model misspecification into

account. The key idea is that instead of conditioning on the observed data Y , one con-

ditions on the event that the difference in the sampling distribution of the observed data

PY and of the idealized data PY ∗ (with Y ∗ denoting the idealized data) is smaller than a

constant number c, where the idealized data are such that all the model assumptions are
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valid. The conditioning event effectively requires a distance metric and we use relative

entropy. Miller and Dunson (2018) provide a simple approximation of the coarsened like-

lihood under relative entropy distance that reduces to raising the standard likelihood to

a fraction, called the learning rate.1 This approximation links the coarsening approach to

the literature on power (or Gibbs) posteriors (Holmes and Walker, 2017; Grünwald and

van Ommen, 2017; Bhattacharya, Pati, and Yang, 2019). The learning rate has a par-

ticularly simple interpretation. The smaller the extent of the misspecification, the closer

the fraction is to one. Vice versa, for large misspecification the fraction is close to zero,

putting less weight on the data.

What sets us apart from the literature on power posteriors is that these papers

consider univariate regression models whereas our goal is to develop robust multivariate

time series models. Using a single coarsening parameter for the full system induces the

same degree of misspecification for all endogenous variables. We avoid this issue by

introducing a separate coarsening parameter per equation. This implies that different

equations can feature different amounts of misspecification. However, the introduction of

separate coarsening parameters breaks up the convenient conjugacy of the multivariate

Gaussian likelihood with the Normal-inverse Wishart prior commonly used in BVARs. As

a solution, we use the asymmetric conjugate prior proposed in Chan (2022) which gives

more flexibility with respect to the prior and likelihood specification.

However, this raises a serious issue. As noted in Miller and Dunson (2018), setting

the learning rate appropriately is challenging. This issue is exacerbated in our framework

since we have to decide on various learning rates, calling for a solution that requires little

input from the researcher. We achieve this using the SafeBayes algorithm (Grünwald and

van Ommen, 2017) to set the learning rate on an equation-by-equation basis. This works

since the asymmetric conjugate prior of Chan (2022) avoids full system estimation by

augmenting each equation with the contemporaneous values of the endogenous variables of

the preceding equations while maintaining conjugacy plus order-invariance. This enables

1Baumeister and Hamilton (2019) downweight earlier observations in their sample by raising the
corresponding likelihood contributions to a fraction smaller than one.
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equation-by-equation estimation of all model parameters, including the hyperparameters

of the prior and the equation-specific learning rates.

To assess the empirical performance of the cBVAR, we first use simulated data,

generated from a large variety of data generating processes (DGPs), characterized by

different types of misspecification. For each of the DGPs, we compare density forecasts

obtained from the cBVAR and from a standard BVAR. It turns out that in the presence of

misspecification using coarsening improves predictive accuracy appreciably, particularly

so for longer forecast horizons. When comparing differences across DGPs we find that

coarsening helps particularly in the case of omitted (exogenous) variables or not considered

MA errors.

Next, we consider a forecasting application to show that coarsening can often lessen

the effects of misspecification for actual US data. Specifically, we focus on point and

density forecasting monthly US unemployment, inflation and short-term interest rates,

using three model sizes (small, medium, and large), Our findings indicate that gains from

coarsening the likelihood are largest if models are small (i.e. the risk of omitted variable

bias is particularly pronounced), with relative gains decreasing if the model becomes

larger, but still present and systematic, in particular for longer forecast horizons. As

macroeconomists tend to prefer small models for empirical analysis, this finding can be

of substantial practical use. Moreover, the gains from coarsening are generally larger

when the Covid period is included in the evaluation sample, in line with the increased

misspecification of the standard BVAR during uncommon times.

The remainder of the paper is structured as follows. The next section provides

an intuitive introduction to the coarsening idea of Miller and Dunson (2018) and links

it to the literature on generalized posteriors. This section sets the stage for our model

developments that follow in Section 3 in which we derive the coarsened likelihood for

the BVAR and then back out the corresponding posterior distributions. In addition, this

section also includes how we set the learning rates and hyperparameters of the prior.

Section 4 provides evidence from synthetic data, while Section 5 includes our real data

forecast exercise. The final section offers a brief summary and conclusions.
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2 Coarsened Posterior Distributions

This section motivates our use of the coarsened likelihood function to derive the coarsened

posterior distribution in the univariate case. To set the stage, the data we observe is

defined as y = (y1, . . . , yT )
′ which is a T × 1 matrix with empirical sampling distribution

Py = 1
T

∑T
t=1 δyt . However, the unobserved idealized dataset is given by y∗ with associated

sampling distribution Py∗ defined analogously to Py. Suppose that y arises from y∗

through a stochastic process which is, unfortunately, unknown and let d(Py, Py∗) denote

a distance function with d(·, ·) ≥ 0. We assume that d(Py, Py∗) < c for some threshold

parameter c ≥ 0. Particular examples of such stochastic processes are simple measurement

error models that assume that yt = y∗t +ϖ with ϖ denoting a random measurement error

with a particular distribution such as a Gaussian or multivariate student t or nonlinear

models that assume that yt = g(y∗t ) for some nonlinear function g.

Standard Bayesian practice would specify a likelihood p(y|ϑ), with ϑ denoting a

vector of parameters, and a prior on ϑ ∼ p(ϑ), both of which are then used to back out

the posterior distribution:

p(ϑ|y) ∝ p(y|ϑ) p(ϑ).

This procedure, however, neglects the fact that y is a corrupted version of y∗. An alterna-

tive would be to set up an auxiliary model p(y|y∗). However, this is not feasible since, in

applications with actual data, the process giving rise to y from y∗ is not known (or might

render the resulting model computationally involved). Miller and Dunson (2018) propose

a simple alternative. Instead of conditioning on y when forming the posterior, one could

condition on d(Py, Py∗) < C instead. Since C is typically unknown to the researcher one

could specify a prior on it, i.e. C ∼ π. Doing so leads to the coarsened posterior:

p(ϑ|d̂(Py, Py∗) < C) ∝ P(d̂(Py, Py∗) < C|ϑ) p(ϑ),

where the probability P(d̂(Py, Py∗) < C|ϑ) can be interpreted as a likelihood function.

6



Notice that this coarsened likelihood is generally not a probability distribution of y given

ϑ.

Different alternatives for the distance function d can be used. The choice of the

discrepancy function can be based on the expected (or rather feared) type of misspec-

ification. For example, as noted by Miller and Dunson (2018), robustness to outliers

requires a discrepancy function that is little sensitive to movements of small amounts of

probability mass to the outlying region (e.g., the first Wasserstein distance). Among the

different distance functions d, one particularly attractive variant stands out, which con-

siders differences in the entire likelihood function: the relative entropy. Moreover, using

the relative entropy between Py and Py∗ and an exponential prior on C ∼ Exp(α) leads

to a particularly simple and accurate approximation of the coarsened posterior. In this

case, it can be approximated as follows (see Miller and Dunson, 2018, for a proof):

p(ϑ|d̂(Py, Py∗) < C) ∝∼ p(ϑ)
T∏
t=1

p(yt|ϑ,y1, . . . ,yt−1)
ϕ, (1)

with ∝∼ denoting approximately proportional to. Equation (1) implies that the coarsened

posterior is simply equal to the prior times a tempered likelihood.2 This is a power

posterior which has been shown to be robust to misspecification of a general form (see,

e.g. Holmes and Walker, 2017; Grünwald and van Ommen, 2017; Bhattacharya, Pati, and

Yang, 2019) and hence using this approximation directly links the coarsening approach

to this literature.

The standard likelihood is raised by a learning rate ϕ. To understand the role of this

learning rate, it is useful to note that the resulting posterior corresponds to shrinking the

sample size from T to ϕT . Hence, when ϕ is small and coarsening is relevant, the sample

size is substantially reduced and the posterior is much less concentrated. This is sensible,

as substantial coarsening should be associated with a larger extent of misspecification,

and hence uncertainty should indeed be larger. Yet, if ϕ is set to a small number when

2This particular form of the coarsened posterior resembles the intermediate approximating distribution
of sequential Monte Carlo (SMC) methods. The main difference is that the learning rate in SMC grows
from 0 (i.e. the likelihood plays no role) to 1 (i.e. one obtains the uncoarsened posterior). If one would
fix the learning rate in SMC to ζT , the result would be a sequential coarsened posterior.
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the model is instead approximately correct, posterior credible sets will be too large and

model complexity likely under-estimated. Therefore, the choice of the parameter ϕ is very

important for coarsening to be helpful and we will discuss a method to select it in a fully

automatic manner later in the paper.

It is worth stressing that this form of the coarsened posterior does not require

the computation of the relative entropy term since it is absorbed in the constant of

proportionality (and thus independent of ϑ).

An interesting question is whether the choice of a specific prior, in particular a robust

one, could make coarsening less relevant. As discussed by Miller and Dunson (2018), this

is not the case since a robust prior makes the results less sensitive to the choice of the

prior but the importance of misspecification of the likelihood remains the same, and the

likelihood dominates the prior when the sample size grows (even though the coarsened

posterior does not concentrate as T diverges just because of coarsening). A related issue is

whether the choice of the prior matters more in the coarsened than in the standard case,

since the ”weight” of the likelihood decreases. Intuitively, this makes sense. Conditional

on the prior, if we believe that the information contained in the likelihood is severely

corrupted (either through wrongly specifying the likelihood or measurement errors, both

of which fall into our definition of misspecification) a good choice would be to downweight

this piece of information.

It is also worth discussing the relationship of coarsening with robust control theory,

to clarify they they are quite different. In robust control theory (see, e.g., Hansen, et al.,

2006; Hansen and Sargent, 2008) the decision maker has one reference model but she

evaluates a decision rule under a set of alternative models that are perturbed versions of

the reference model. Hansen, et al. (2006) measure the difference between the reference

and perturbed models using relative entropy, taking the maximum value of the difference

as a parameter that measures the set of perturbations against which the decision maker

seeks robustness (and restricts the extent of model misspecification). They also provide

conditions that permit to consider the perturbed models as the multiple priors that appear

in the max–min expected utility theory of Gilboa and Schmeidler (1989). Instead, in our
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context, the prior is unique, we condition on the fact that the reference model can be at

a certain (entropic) distance from the true model, and we contaminate the likelihood to

take that into account when forming the posterior distribution of the model parameters.

3 Coarsened Bayesian VAR

In this section we develop the cBVAR model for the multivariate case. Inference is

complicated by the fact that the degree of misspecification may vary across equations.

This warrants the introduction of a distinct learning rate for each endogenous variable in

the VAR. We start by discussing the coarsened likelihood of the VAR in Subsection 3.1.

In Subsection 3.2 we sketch our prior setup and provide details on the full conditional

posterior distributions. Finally we move on to discussing how to set the learning rates

and other hyperparameters in Subsection 3.3.

3.1 Coarsened Likelihood

Let yt = (yt,1, . . . , yt,M)′ be the vector of M economic variables at time t. We consider a

linear and homoskedastic VAR model of order P , with reduced form given by:

yt = a+A1yt−1 + · · ·+APyt−P + ut, ut ∼ N (0,Σ), (2)

with α denoting the intercept vector, Ap (p = 1, . . . , P ) being M ×M matrices of autore-

gressive coefficients, and ut denotes a Gaussian vector white noise process with zero mean

and M × M -dimensional variance-covariance matrix Σ. The model in Eq. (2) contains

k = (PM + 1)M regression coefficients and v = M(M + 1)/2 free elements in the error

variance-covariance matrix.

Using the Cholesky decomposition of Σ = B−1
0 Σ̃B−1′

0 , where B0 is the lower uni-

triangular and Σ̃ = diag(σ2
1, . . . , σ

2
M) is a diagonal matrix, and multiplying Eq. (2) from
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the left with B0, we obtain the structural form of the model:

B0yt = β +B1yt + · · ·+BPyt−P + εt, εt ∼ N (0, Σ̃),

with β = B0α, Bp = B0Ap (for p = 1, . . . , P ) and εt = B0ut being a vector of mu-

tually independent error terms. Since Σ̃ is diagonal, it is straightforward to derive the

representation for equation i only:

yt,i = ϑ̂′
iỹt,i + θ̃′

ix̃t,i + εt,i, εt,i ∼ N (0, σ2
i ),

where yt,i and εt,i denote the i-th elements of yt and εt, respectively. For later reference,

we have introduced two blocks of parameters. First, the (i− 1)-dimensional vector ỹt,i =

(−yt,1, . . . ,−yt,i−1)
′ contains contemporaneous observations of the variables ordered above

variable i in yt and ϑ̂i are the corresponding contemporaneous parameters. Note that ỹt,i

and ϑ̃i only exist for i > 1. Second, x̃t,i = (1,y′
t−1, . . . ,y

′
t−P )

′ is a (MP + 1)-dimensional

vector that contains lagged observations and the intercept term. The corresponding re-

gression coefficients are given by θ̃i = (βi, B1,i,1, . . . , B1,i,M , . . . , BP,i,1, . . . BP,i,M)′.

We can rewrite the regression model for equation i more concisely as:

yt,i = θ′
ixt,i + εt,i, εt,i ∼ N (0, σ2

i ),

with xt,i = (ỹt,i, x̃t,i) and θi = (ϑ̂i, θ̂i) being vectors of dimensions (i+MP ), respectively.

Stacking observations over time yields

Yi = Xiθi + εi, εi ∼ N (0, σ2
i IT ),

where Yi = (y1,i, . . . , yT,i)
′ is a T -dimensional vector and Xi = (x′

1,i, . . . ,x
′
T,i)

′ is a matrix

of dimension T × (i+MP ).

Since Σ̃ is diagonal, the likelihood of the full system is the product ofM conditionally
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independent Gaussian densities:

p(Y1, . . . ,YM |,θ1, . . . ,θM , σ2
1, . . . , σ

2
M) =

(
M∏
i=1

p(Yi|θi, σ
2
i )

)
.

We use this form of the likelihood because it effectively allows us to treat each equa-

tion independently and hence introduce separate coarsening parameters per series. This

is predicated on the fact that certain series in yt might be more prone to misspecifica-

tion than other series. Hence, using a single coarsening parameter on the joint likelihood

implies a trade-off; we can either control for substantial degrees of misspecification or

little/no misspecification. Therefore, we set up the coarsened likelihood for each equation

of the VAR and introduce separate coarsening parameters ϕi:

p̃(Yi|θi, σ
2
i , ϕi) =

(
T∏
t=1

p(yt,i|θi, σ
2
i )

ϕi

)
.

Rewriting this equation yields the equation-specific coarsened likelihood:

p̃(Yi|θi, σ2
i , ϕi, ) = (2πσ2

i )
−ϕiT

2 exp

(
− ϕi

2σ2
i

T∑
t=1

(yt,i − θ′
ixt,i)

2

)
.

The joint coarsened likelihood is then given by:

p̃(Y1, . . . ,YM |θ1, . . . ,θM , σ2
1, . . . , σ

2
M , ϕ1, . . . , ϕM , ) =

M∏
i=1

p̃(Yi|θi, σ2
i , ϕi, ). (3)

For large values of M and P , the number of parameters can quickly exceed the number

of available observations, and the OLS estimator ceases to exist. Hence, regularization is neces-

sary, and Bayesian approaches that rely on specifying priors on θ1, . . . ,θM and σ̂2
1, . . . , σ̂

2
M are

commonly employed. In the next sub-section we will derive the coarsened posterior under the

asymmetric conjugate prior.

3.2 Coarsened Bayesian Analysis of the VAR

The natural conjugate prior (see, e.g., Kadiyala and Karlsson, 1997; Koop, 2013; Carriero, Clark,

and Marcellino, 2015) implies that the amount of shrinkage is proportional across equations
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(scaled by the corresponding elements of the covariance matrix Σ). Since we start from the

assumption that the amount of misspecification can differ across equations, this assumption

is overly restrictive. As a solution, we use the asymmetric conjugate prior proposed in Chan

(2022). This prior has the convenient property that it leads to analytical posterior results and

can be combined with the coarsened likelihood in Eq. (3). Moreover, it leads to a model that is

order-invariant since the prior on the contemporaneous terms translates into an inverted Wishart

prior on Σ.

We assume that the priors for each equation i = 1, . . . ,M are mutually independent

such that p(θ1, . . . ,θM , σ2
1, . . . , σ

2
M ) =

∏M
i p(θi, σ

2
i ). The prior on the regression coefficients is

normally distributed and conditions on σ2
i :

(θi|σ2
i ) ∼ N (θi, σ

2
i V i)

with θi denoting the prior mean and Vi a prior variance-covariance matrix of dimension Ki×Ki.

We follow the Sims and Zha (1998) tradition and assume that, a priori, the elements in yt

follow M independent random walks. This is achieved by centering B1 on IM (or to 0M if

the data is stationary) and Bp (p ̸= 1) on 0M×M . Let θi = (ϑ̃i, θ̃i), where ϑ̃ and θ̃i denote

the prior mean for the block of contemporaneous and dynamic coefficients, respectively. For

equation i = 1, . . . ,M , we set the prior mean as θ̃i = (0′(i−1)×1, 1,0
′
(M−i)×1)

′. The prior on the

contemporaneous coefficients is centered on zero: ϑ̃ = 0i−1×1.

We assume that the prior variance-covariance matrix V i = diag(v2
ϑ̃,i
,v2

θ̃,i
) is diagonal. In

this paper, we follow Chan (2022) and set v2
ϑ̃,i

= (1/s21, . . . , 1/s
2
i−1), where s2i denotes the OLS

estimate of the residual error variance of an AR(P ) model for variable i. The elements of v2
θ̃

are set using the Minnesota prior, which shrinks coefficients associated to higher-order lags of

yt and makes a distinction between the own and other lags of a particular target variable. In

particular, the kth element of v2
θ̃
reads:

v2
θ̃,i,k

=



κ1,i

p2s2i
, for the coefficient of the p-th lag of variable i

κ2,i

p2sj
, for the coefficient of the p-th lag of variable j ̸= i

κ3, for the regression intercept
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where, for each equation i, κ1,i controls the amount of shrinkage induced on the coefficients

associated with lags of variable i and κ2,i is the shrinkage hyperparameter for coefficients asso-

ciated with lags of other variables. More information on how we set κ1,i and κ2,i is provided

in Subsection 3.3. The hyperparameter κ3 is set equal to 102 to effectively introduce no prior

information on the intercept term.

On the error variances we use an inverse Gamma prior:

σ2
i ∼ IG(νi, Si),

where νi and Si denote the scale and shape parameter, respectively. We set νi = 1 + i/2

and si = s2i /2. Chan (2022) shows that this choice, in combination with the prior on ϑ̂i,

leads to a prior on the reduced-form error variance-covariance matrix which follows an inverse

Wishart distribution Σ ∼ IW(M+2,S) with M+2 degrees of freedom and prior scaling matrix

S = diag(s21, . . . , s
2
M )/(M + 2) .

At this point, it is worth stressing that our coarsened likelihood can be combined with

any of the priors commonly used in the VAR literature. For instance, priors based on the use

of structural models to inform parameter estimates (see, e.g., Ingram and Whiteman, 1994;

Del Negro and Schorfheide, 2004; De Luigi and Huber, 2018; Loria, Matthes, and Wang, 2022),

priors utilizing information on the long-term behavior of the time series under scrutiny (Gian-

none, Lenza, and Primiceri, 2019) or priors that force the VAR towards factor models (Huber

and Koop, 2023) can be easily incorporated in our framework.

The joint prior
∏M

i=1 p(θi, σ
2
i ) =

∏M
i=1 p(θi|σ2

i ) × p(σ2
i ) can be combined with Eq. (3) to

obtain the joint coarsened posterior distribution:

p(θ1, . . . ,θM , σ2
1, . . . , σ

2
M |Y1, . . . ,YM , ϕ1, . . . , ϕM )

=

M∏
i=1

ci(2π)
−ϕiT

2 (σi)
−(νi+

i+MP
2

+1)exp

(
− 1

σ2
i

(Si +
1

2
(θi − θi)

′V i(θi − θi))

)
,

which is the product of M Gaussian-Inverse-Gamma distributions:

(θi, σ
2
i |Y ) ∼ NIG(θi,V i, vi, Si). (4)

13



We provide an analytical expression for the normalizing constant ci of the posterior in Subsec-

tion 3.3. The posterior hyperparameters are given by:

V i = (V −1
i + ϕiX

′
iXi)

−1,

θi = V i(V
−1
i θi + ϕiX

′
iYi)

νi = νi +
ϕiT

2
,

Si = Si + (ϕiY
′
i Yi + θ′

iV iθi − θ
′
iV iθi)/2.

As discussed in Chan (2022), it is straightforward to sample from this distribution by first

sampling σ2
i ∼ IG(νi, Si) marginally and then drawing θi|σ2

i ∼ N (θi, σ
2
i V i) conditionally on

the current draw of σ2
i .

3.3 Deciding on the degree of coarsening and setting the prior

hyperparameters

For each equation in the VAR we need to decide on the learning rate as well as the hyperpa-

rameters controlling the prior tightness. There are several ways to choose ϕi. First, one can use

prior information on the amount of misspecification. However, for possibly large-dimensional

macroeconomic datasets, this turns out to be unfeasible. Second, we could use cross-validation.

This essentially implies that one recomputes the model to obtain quantities of interest (such as

forecasts or impulse responses) for different values of ϕi and picks the one that minimizes a loss

function. Third, from a Bayesian perspective one could integrate out ϕi. Grünwald and van

Ommen (2017) show, however, that this strategy does not work, since without substantial prior

information on ϕi the model severely underestimates the true degree of misspecification and we

would end up setting ϕi close to one.

In this paper, we use the SafeBayes algorithm of Grünwald and van Ommen (2017) that is

fully automatic and has excellent theoretical and empirical properties. Since our model is written

in its recursive form, the SafeBayes algorithm proceeds on an equation-by-equation basis.

Before starting the algorithm, we need to define a grid of length R of possible learning rates

Φi. In our empirical work, Φi = (0.05, 0.1, . . . , 1)′ for all i. Then, conditional on a particular

value ϕ
(j)
i ∈ Φi, we first decide on the optimal shrinkage parameters of the Minnesota prior.
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Algorithm 1 SafeBayes (Grünwald and van Ommen, 2017)

Input: Data Y , learning rate proposals Φ
Output: learning rates ϕ1, . . . , ϕM , prior hyperparameters κ1,1, κ2,1, . . . , κ1,M , κ2,M

for i in 1, . . . ,M do
for all ϕ ∈ Φ do

Select κ∗
1,i,ϕ, κ

∗
2,i,ϕ = argmaxκ1,i,κ2,i

p̃(Yi|κ1,i, κ2,i, ϕi)
for t in 1, . . . , T − 1 do

Obtain coarsened posterior expectation conditional on data up to time t:
Et(θi, σ

2
i |Yi,1:t, ϕ, κ

∗
1,i, κ

∗
2,i)

Calculate loss function by predicting actual next outcome:
li,ϕ,t = −log f(yi,t+1|xi,t+1,Et(θi, σ

2
i |Yi,1:t, ϕ, κ

∗
1,i, κ

∗
2,i))

end for
end for

Choose ϕi := argminϕ∈Φ
∑T−1

t=1 li,ϕ,t and corresponding κ∗
1,i,ϕi

, κ∗
2,i,ϕi

end for

This is done by maximizing the coarsened marginal likelihood (ML) with respect to κ1,i, κ2,i

while conditioning on ϕ
(j)
i :

κ
(j)
1,i , κ

(j)
2,i = argmax

κ1,i,κ2,i

p̃(Yi|ϕi = ϕ
(j)
i , κ1,i, κ2,i),

with p̃(Yi|ϕi = ϕ
(j)
i , κ1,i, κ2,i) denoting the coarsened ML specific to equation i. This is given

by:

p̃i(Yi|ϕi, κ1,i, κ2,i) = (2π)
ϕiT

2 |V i|−
1
2 |V i|

1
2
Γ(νi)s

νi
i

Γ(νi)s
νi
i

.

Here, we let Γ(•) denote the Gamma function and |A| denotes the determinant of a matrix

A. It should be noted that we optimize the coarsened ML for each value of ϕi, implying that

the hyperparameters are set as a function of the degree of misspecification. This is related to

González-Casasús and Schorfheide (2025) who use misspecification robust loss functions instead

of the marginal likelihood to select the hyperparameters of a Bayesian VAR. Contrary to our

approach, this is done on a full-system basis.

Conditional on ϕ
(j)
i and the optimal shrinkage parameters κ

(j)
1,i , κ

(j)
2,i , we then loop through

t = 1, . . . , T − 1 and derive the coarsened posterior expectations for Et[θi] and Et[σ
2
i ] using only

data up to time t. We use these to evaluate the loss function li,ϕ,t = −log f(yi,t+1|xi,t+1,Et[θi],E[σ2
i ])

at time t. In our empirical work, the loss function equals the log predictive likelihood (LPL), a
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commonly used forecast evaluation metric. This implies setting f(·) = N (yi,t+1|Et[θi]
′xi,t+1,Et[σ

2
i ]).

After performing this operation for all t, we choose the learning rate out of Φ that minimizes

the sum of loss functions over the entire sample:

ϕ∗
i = argmin

ϕ∈Φ

T−1∑
t=1

li,ϕ,t,

and choose the associated prior hyperparameters κi,1 = κ∗i,1 and κi,2 = κ∗i,2. This choice of the

loss function is also motivated in Grünwald and van Ommen (2017).

This is repeated for each equation until we end up with M optimal learning rates and

associated prior hyperparameters. Notice that the conjugate nature of our model makes this

step computationally tractable. If posterior quantities such as the predictive mean, the predictive

variance or the marginal likelihood would not be available in closed form, one would have to use

simulation-based methods for each value of ϕ
(j)
i in our grid. Algorithm 1 gives an overview of

the algorithm.

4 Evidence based on synthetic data

In this section, we carry out a structured evaluation of the empirical performance of our coars-

ened BVAR model using a detailed Monte Carlo exercise. First, we employ a straightforward

illustrative example grounded in a DGP with non-Gaussian errors. Subsequently, we examine

the predictive capacity of our method in various DGPs.

4.1 An illustrative example

To investigate whether the estimated coarsening parameter effectively picks up model misspecifi-

cation, we simulate T = 500 observations from a small linear VAR where the errors are Student’s

t distributed with varying degrees of freedom ν.3 In particular, we decrease the degrees of free-

dom from 20 (in which case the shape of the Student-t distribution generates a moderate amount

of outliers such that the standard BVAR is only lightly misspecified) to 3 (the lowest value for

which the moments of the Student-t distribution exist; implying a maximum amount of misspec-

ification). This leads to 18 different DGPs, from each of which we take 100 draws to estimate

3Information on the precise DGP used can be found in Subsection A.2 of the Online Appendix.
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Figure 1: Estimated Coarsening parameter vs. degrees of freedom of the Student-t
distribution generating the model errors.
Notes: Estimates are the mean over 100 draws from each DGP and over all three VAR
equations.
Legend: − represents a smoothed spline.

the cBVAR.

Figure 1 shows the mean estimate (averaged over all realizations from each DGP and all

VAR equations) for each of these DGPs. Starting with the extreme case of three degrees of

freedom, our model selects an average learning rate of around 0.44, controlling for the fact that

the shocks are heavy-tailed and the misspecified model we estimate has much lighter tails. This

learning rate results in a significantly wider predictive distribution, suggesting that the cBVAR

model is more capable of accommodating outliers compared to the conventional BVAR model.

Considering larger degrees of freedom reveals that the learning rate increases quickly (to

around 0.5) before reaching a level of around 0.57 for larger degrees of freedom. This is surprising

given that, in this case, the standard BVAR is actually well-specified. However, notice that the

number of observations is large (given the size of the model), and outliers are still more likely

under the t distribution with moderate degrees of freedom. In this case, the SafeBayes algorithm

would set the learning rate below one. This is driven by the loss function that depends on the

log predictive score.
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4.2 Simulation results based on a large universe of data gener-

ating processes

4.2.1 Design of the Monte Carlo exercise

We evaluate the performance of our coarsened BVAR against that of a standard Bayesian VAR

without likelihood tempering across a range of different data generating processes (DGPs). We

vary these DGPs across two dimensions. Firstly, we allow for different conditional mean specifi-

cations. We consider a standard linear VAR (labeled ”Linear”), a VAR with structural breaks in

the parameters (”Breaks”), a VAR augmented with exogenous variables (”Exo”) and a smooth-

transition VAR (”Transition”). Secondly, for the error term we consider standard, Gaussian

errors (”Gaussian”), errors arising from a Student-t distribution (”Student”), heteroskedastic

errors whose variance arises from a stochastic volatility process (”SV”) and errors featuring a

moving average component (”MA”). The latter specification allows us to test whether coarsening

helps for dynamically misspecified models along the lines of Schorfheide (2005) and González-

Casasús and Schorfheide (2025). Details on the specifications of these DGPs can be found in

Subsection A.2 of the Online Appendix.

Moreover, to investigate the relationship between model performance and size, we consider

three different model sizes. The first is a small VAR with three variables (”small”), the second is

a medium-sized VAR containing nine variables (”medium”) and the third is a large 27-variable

VAR (”large”).

These combinations of conditional mean and variance specifications reflect a large share of

models commonly applied by empirical macroeconomists. Practitioners are also often interested

in estimating larger models, motivating our wish to understand how coarsening performs for

models of different sizes. Each of the DGPs is then calibrated by estimating the respective

model parameters on US macro data taken from the FRED-MD data base (McCracken and Ng,

2016). We estimate all models with P = 2 lags.

From each DGP, we draw 100 different realizations of yt of size T = 200 to estimate the

coarsened and standard BVAR. For each of these runs, we then use the DGP to simulate 1, 000

out-of-sample datasets with H = 12 observations each. This yields a total of 100 · 1, 000 =

100, 000 evaluation points at each forecast horizon. For each evaluation point in the holdout, we

compute the LPL of a particular cBVAR vis-á-vis the BVAR (in differences such that numbers
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above zero mean better performance of the cBVAR).

4.2.2 Predictive results

Table 1 displays the mean differences in LPLs averaged across all test sets and all draws from

each DGP.4 Table 1 is divided into three blocks containing results for the small, medium and

large models, respectively. Each of these, in turn, consists of three blocks for the different

forecast horizons. We also report the results of a Diebold and Mariano (1995) test with the null

hypothesis of equal forecast performance.

In general, the coarsened VAR exhibits a superior performance relative to the traditional

Bayesian VAR. We observe a clear and steady pattern: the benefits of using the coarsened

likelihood as a substitute for the standard version grow in parallel with the forecast horizon.

As VAR predictive distributions are generated iteratively, errors due to model misspecification

tend to accumulate and intensify the more extended the forecast period is (see, e.g., Marcellino,

Stock, and Watson, 2006).

Another salient observation is that the forecast gains increase with model size. As outlined

above, the misspecified standard VAR fits a model based on data that did not arise from the

postulated DGP. Since larger models tend to fit the data more strongly, the negative implications

of misspecification convolute and have a deleterious impact on forecasting performance that

increases with model size.

When we focus on specific selections for model size, conditional mean, and variance, some

noteworthy patterns emerge. Firstly, in the case of correct model specification (Linear + Gaus-

sian), it appears that coarsening only adversely affects predictive accuracy when the model size

is small. However, these effects are minimal and the predictive distributions remain similar to

those of the standard BVAR. Conversely, if the model continues to be correctly specified but

increases in size, coarsening can enhance predictive performance. This unexpected outcome

aligns with the simulation findings of Grünwald and van Ommen (2017), who, while examining

Bayesian ridge regressions, discover that SafeBayes significantly reduces risk even in the correctly

specified case.

For combinations of the conditional mean and variance that imply a misspecified model,

we find substantial gains, but only for forecast horizons greater than one-step-ahead. The largest

4Results for point forecasts are provided in the Online Appendix.
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Table 1: Differences in joint LPL scores for predictive distributions.

Gaussian Student SV MA

∆ LPLS ∆ LPLS ∆ LPLS ∆ LPLS

One-month-ahead predictions

S
m
a
ll
-s
iz
e
d

Linear -0.01 -0.02 -0.02 -0.01
Break 0.03 *** 0.02 *** 0.03 *** 0.04 ***
Exo 0.03 *** -0.04 0.01 *** 0.01 ***
Transition -0.03 -0.05 -0.03 -0.02

One-quarter-ahead predictions
Linear 0.02 *** 0.11 *** 0.04 *** 0.43 ***
Break 0.38 *** 0.54 *** 0.39 *** 0.92 ***
Exo 0.91 *** 0.15 0.89 *** 0.31 ***
Transition 0.10 *** 0.01 0.12 *** 0.46 ***

One-year-ahead predictions
Linear -0.46 -0.03 -0.58 6.50 ***
Break 2.67 *** 2.66 *** 2.16 *** 9.61 ***
Exo 29.94 *** 10.08 *** 42.86 *** 7.84 ***
Transition 1.32 *** -1.28 1.41 *** 6.44 ***

One-month-ahead predictions

M
e
d
iu
m
-s
iz
e
d

Linear 0.05 *** 0.06 *** 0.06 *** -0.13
Break 0.63 *** 0.89 *** 0.74 *** 0.58 ***
Exo 0.79 *** 0.65 *** 1.01 *** 1.24 ***
Transition 0.30 *** 0.18 *** 0.25 *** 0.40 ***

One-quarter-ahead predictions
Linear 1.47 *** 1.80 *** 1.54 *** 4.65 ***
Break 5.13 *** 7.02 *** 6.25 *** 5.35 ***
Exo 24.95 *** 17.04 *** 23.81 *** 30.37 ***
Transition 2.30 *** 1.42 *** 2.00 *** 3.10 ***

One-year-ahead predictions
Linear 6.69 *** 5.74 *** 6.15 *** 28.52 ***
Break 20.46 *** 19.39 *** 22.95 *** 22.22 ***
Exo 955.96 *** 425.01 *** 772.48 *** 1030.49 ***
Transition 14.12 *** 0.72 12.78 *** 20.77 ***

One-month-ahead predictions

L
a
rg

e
-s
iz
e
d

Linear 3.91 *** 4.94 *** 3.94 *** 5.76 ***
Break 5.96 *** 7.23 *** 6.56 *** 8.98 ***
Exo 21.30 *** 12.98 *** 17.42 *** 31.54 ***
Transition 0.53 *** 0.96 *** 0.77 *** 0.76 ***

One-quarter-ahead predictions
Linear 22.55 *** 26.31 *** 23.83 *** 42.96 ***
Break 16.98 *** 20.25 *** 18.59 *** 23.89 ***
Exo 103.53 *** 66.36 *** 92.34 *** 157.14 ***
Transition 4.49 *** 5.54 *** 5.10 *** 8.69 ***

One-year-ahead predictions
Linear 69.99 *** 85.33 *** 74.48 *** 121.29 ***
Break 52.76 *** 58.37 *** 54.51 *** 71.30 ***
Exo 495.35 *** 284.06 *** 471.56 *** 713.78 ***
Transition 15.80 *** 17.71 *** 17.53 *** 26.73 ***

Notes: Differences are averaged over all draws and test sets for each DGP. Stars indicate
p-values from a one-sided t-test with alternative hypothesis that cBVAR produces larger
LPL scores.
Legend: . ∼ p < 0.16; ∗ ∼ p < 0.1; ∗∗ ∼ p < 0.05; ∗∗∗ ∼ p < 0.01
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gains can be found in the case of omitted variables (”Exo”). In this case, the cBVAR produces

much more precise density forecasts than the benchmark specification for forecast horizons

greater than one-step-ahead. Interestingly, these gains do not always increase if we allow for

misspecification in the error terms: the largest gains can be found if we ignore a MA structure in

the shocks while the second-largest gains are observed if the shocks are Gaussian. This pattern

is consistent across model sizes.

For the other DGPs which imply non-linearities in the conditional mean, we also observe

gains from coarsening. However, these are less pronounced than in the case of (neglecting)

exogenous factors. Interestingly, we find a different pattern if we allow for distributional mis-

specification. If we consider structural breaks or smooth transition DGPs, we find that solid

gains can already be obtained for the one-step-ahead forecast if the errors feature stochastic

volatility or a MA structure. For larger horizons (and model sizes), a pattern similar to the

DGP featuring exogenous covariates shows up. In most cases, we find the largest improvements

in forecast accuracy if the DGP has MA shocks or homoskedastic Gaussian disturbances.

In conclusion, we find strong evidence in favor of our proposed approach. In the vast

majority of cases the cBVAR significantly outperforms its non-coarsened competitor. The only

case where the results are somewhat mixed are one-step-ahead LPLs arising from the small

model. For larger model sizes, improvements increase further and tend to be present for short-

term forecasts as well.

5 Macroeconomic forecasting with coarsened VARs

5.1 Data, model specification and design of the forecasting ex-

ercise

We employ our cBVAR to forecast a range of US macroeconomic variables. Again, we focus

on three model sizes. First, we consider a small VAR in three variables. These three variables

are the unemployment rate (UNRATE), CPI inflation (CPIAUCSL) and the short-term inter-

est rate (FEDFUNDS). Second, the three series of the small model are complemented with an

additional six series. These are average weekly working hours in manufacturing (AWHMAN),

the real M2 money stock (M2REAL), the S&P500 stock price index (S&P 500), the industrial
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production index (INDPRO), the spread between the federal funds rate and 10-year treasury

rate (T10YFFM) as well as the consumer price index for commodities (CUSR0000SAC). Fi-

nally, we consider a large model that builds on the medium-scale model and adds additional

18 series such that the large model comprices 27 variables in total. The data is sourced from

the FRED-MD database (McCracken and Ng, 2016) and transformed to stationarity using the

transformation codes suggested in McCracken and Ng (2016). Precise information on the series

and transformations is provided in Table B.1 of the Online Appendix. All models we consider

include P = 2 lags.

Model comparison is done using LPLs and mean squared forecast errors (MSFEs). This

is done in two ways. We consider two types of LPLs. First, we focus on univariate LPLs for

three target series (the unemployment rate, UNRATE; CPI inflation, CPIAUCSL; and short-

term interest rates, FEDFUNDS). This gives us information on how well coarsening helps when

predicting each of the series individually. Second, we consider the joint LPL over all series in yt.

This gives an impression on the overall predictive performance of a model. All loss functions are

computed for the one-month-ahead, one-quarter-ahead and one-year-ahead forecast horizon.

The forecast design is as follows. Our sample starts in 1967:M07 and ends in 2023:12.

We use 1967:M07 to 1999:M12 as our initial training sample. After estimating the models, we

produce the predictive distributions for 2000:M01 up to 2000:M12. We then add one additional

observation to the initial estimation window and compute the corresponding predictive distri-

butions (2000:M02 to 2001:M01). This procedure is repeated until we arrive at the end of the

sample.

5.2 Forecasting results

5.2.1 Point forecasting accuracy

We start our discussion with the point forecasting performance for the three focus variables.

As a point forecast, we use the posterior median of the respective predictive distributions. The

MSFEs for the cBVAR, in ratios relative to the BVAR, are shown in Table 2. Numbers greater

than one imply that the cBVAR produces less precise point forecasts, whereas numbers smaller

than one indicate the opposite. Raw MSFEs for the BVARs are shown in the columns labeled

’BVAR’.
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Table 2: Mean squared error over the entire hold-out period.

Variables Small Medium Large

cBVAR BVAR cBVAR BVAR cBVAR BVAR

One-month-ahead predictions
UNRATE 0.86 0.12 0.88 . 0.12 0.93 0.1
CPIAUCSL 1 0.02 1.02 0.02 1.05 0.02
FEDFUNDS 0.33 . 0.01 0.71 ** 0 0.65 *** 0.01

One-quarter-ahead predictions
UNRATE 0.8 . 0.43 0.79 0.42 0.85 . 0.34
CPIAUCSL 0.99 0.13 0.98 0.13 0.97 0.13
FEDFUNDS 0.41 0.04 0.84 . 0.04 0.69 *** 0.05

One-year-ahead predictions
UNRATE 0.93 * 1.07 0.91 0.98 0.85 . 1.06
CPIAUCSL 1.05 0.72 0.95 0.75 1.2 0.63
FEDFUNDS 0.91 0.17 0.89 * 0.23 0.78 0.38

Notes: Results for the cBVAR are the ratio relative to the BVAR. Stars indicate
p-values from a one-sided DM-test with alternative hypothesis that cBVAR produces
smaller forecast errors.
Legend: . ∼ p < 0.16; ∗ ∼ p < 0.1; ∗∗ ∼ p < 0.05; ∗∗∗ ∼ p < 0.01

When assessing point forecasts, we find that coarsening leads to more accurate point

forecasts for all variables except inflation. For the unemployment rate, we find improvements

of around 14 percentage points (PPs) at the one-month-ahead horizon. For one-quarter-ahead,

these improvements reach about 20 PPs before deteriorating appreciably when one-year-ahead

predictions and the small dataset are being considered. These gains remain similar when we

consider the medium-sized dataset (with very small improvements for one-quarter- and one-

year-ahead forecasts). When we consider the large model, we find somewhat weaker gains from

coarsening for forecasts up to one-quarter-ahead. However, for longer-run predictions (one year

in advance), we observe improvements of around 15 PPs. These somewhat smaller improvements

for short-run unemployment rate forecasts are most likely driven by the fact that larger models

mitigate misspecification issues by trading unobserved heterogeneity with observed heterogeneity

(through the inclusion of many more series that soak up patterns a more flexible econometric

model would otherwise pick up).

Turning to inflation forecasts gives rise to a mixed picture. For one-quarter-ahead pre-

dictions (and irrespective of the model size), we find MSFE ratios close to (but mostly above)

one. Increasing the forecast horizon to one-quarter-ahead slightly changes this picture, suggest-
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ing small improvements in forecast performance for the medium and large models. But these

improvements are minor and reach around three PPs (for the large model). When we consider

one-year-ahead forecasts we find that coarsening hurts point forecast accuracy for small and

large models, with pronounced losses of around 20 PPs for the biggest model we consider. Only

for the medium model, we observe gains of around 5 PPs.

The time series that profits most from coarsening is the Federal Funds rate. In this case,

improvements for the critical one-month-ahead horizon reach staggering 67 PPs for the small

model and still sizable improvements of 29 to 35 PPs for the medium and large models, respec-

tively. These strong gains are driven by the zero lower bound (ZLB). Econometrically, the ZLB

is a non-linear feature in the FEDFUNDS time series that should be controlled for through,

e.g., regime-switching models (Liu, et al., 2019) or models that allow for estimating the shadow

interest rate (Carriero, et al., 2025). The BVAR ignores this, leading to misspecification. This

results in predictions that display substantial amounts of high-frequency variation even if the

short-term interest rate is stuck close to zero. By contrast, the coarsened model produces a pre-

dictive median that displays much less high-frequency variation (see Figure C.1g to Figure C.3g

of the Online Appendix), and this leads to substantial improvements in MSFEs. Once we in-

crease the forecast horizon, these gains become slightly smaller, but even for the one-year-ahead

horizon, remain sizable.

5.2.2 Density forecasting accuracy

We now turn to discussing whether coarsening also helps for higher-order moments by considering

LPL differences to the uncoarsened VAR. Table 3 shows average LPL differences between the

cBVAR and the BVAR as well as absolute LPLs for the BVAR benchmark. Numbers exceeding

zero indicate outperformance of the cBVAR while negative numbers indicate the opposite. Unlike

Table 2, we also have rows that show the performance of the joint density forecast.

In terms of density forecasts, we find an overall picture that is closely related to the one

observed for point forecasting performance. Starting with the joint density forecast performance,

we find improvements relative to the BVAR for all three model sizes and forecast horizons.

Notice that the general pattern that performance improvements increase with the predictive

horizon is visible for the medium- and large-scale models. For the small model, we find strong

improvements for one-quarter-ahead LPLs and less pronounced gains for one-month- and one-
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year-ahead LPLs.

Table 3: Average LPL scores over the entire hold-out period.

Variables Small Medium Large

cBVAR BVAR cBVAR BVAR cBVAR BVAR

One-month-ahead predictions
Joint 0.28 * -2.99 0.26 * -3.69 0.57 ** -3.88
UNRATE 0.01 *** 0.42 -0.01 *** 0.44 -0.01 *** 0.44
CPIAUCSL 0.11 . 0.90 0.00 *** 1.01 0.02 *** 1.01
FEDFUNDS 0.39 * -1.77 0.42 *** -1.93 2.64 *** -16.03

One-quarter-ahead predictions
Joint 1.26 . -13.57 1.47 . -15.71 3.75 * -18.95
UNRATE 0.13 *** -3.32 0.27 *** -3.42 0.80 *** -4.11
CPIAUCSL 0.72 . -0.07 0.26 *** -0.11 0.66 *** -0.65
FEDFUNDS 1.86 * -16.73 2.89 ** -37.45 16.81 *** -141.52

One-year-ahead predictions
Joint 1.60 * -39.09 2.21 * -41.11 15.12 ** -61.13
UNRATE -0.74 *** -23.32 2.36 *** -25.66 -0.59 ** -24.96
CPIAUCSL 0.65 * -3.63 1.46 *** -6.14 4.29 ** -12.02
FEDFUNDS 0.85 ** -63.07 11.17 *** -175.01 58.64 *** -607.74

Note: Results for the cBVAR are in differences relative to the BVAR. Stars indicate p-values from a
one-sided DM-test with alternative hypothesis that cBVAR produces larger LPL scores.
Legend: . ∼ p < 0.16; ∗ ∼ p < 0.1; ∗∗ ∼ p < 0.05; ∗∗∗ ∼ p < 0.01

When we hone in on the variable-specific performance a story similar to the one we have

seen in Table 2 emerges. For unemployment rate forecasts, we find muted gains for one-month-

ahead predictions. These increase with the forecast horizon. Notice that, for all three forecast

horizons, the large model produces the weakest forecasts in absolute terms.

For CPI inflation and, in difference to the point forecasts, we find that the cBVAR im-

proves upon the BVAR for the one-quarter-ahead forecast horizon and for all three model sizes

considered. For one-month-ahead and one-year-ahead predictions we find either negligible im-

provements (in the case of the small model) or losses.

Finally, for short-term interest rate forecasts we find improvements for forecast horizons

greater than one-month-ahead. For the one-month-ahead horizon, modest gains are visible if

the small model is adopted. For larger model sizes, improvements are minor.

In summary, the good performance for point forecasts is accompanied by more accurate

density predictions. This holds not only for the three focus variables but also when we consider
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the joint density forecasts.

Similarly to our Monte Carlo exercise, we observe that coarsening gains increase with

model size, because larger versions of the standard BVAR suffer more heavily from misspecifi-

cation. In particular, extreme events such as the global Covid-19 pandemic affect many series

at once, leading to large losses in forecast gains if not adequately controlled for.

5.2.3 Density forecast performance over time

The discussion thus far has focused on average forecast performance. To analyze whether the

performance gains from coarsening vary over time, we now analyze the evolution of the cumu-

lative LPLs over time. The figure shows the variable-specific and joint cumulative LPLs across

all three model sizes and forecast horizons. The blue lines refer to the one-month-ahead, the

red lines to the one-quarter-ahead and the green lines to the one-year-ahead forecast horizons.

We again start with the overall density forecast performance, measured in terms of the

joint LPLs over time and displayed in Figure 2a. For small datasets, we find little differences

for short-term forecasts (one-month- and one-quarter-ahead) until the onset of the pandemic.

In this case, we observe that coarsening substantially improves predictive performance. This

finding carries over to medium- and large-scale models. During the pandemic, some of the time

series (such as the unemployment rate) displayed substantial outliers that are inconsistent with

a Gaussian homoskedastic model. Coarsening, by contrast, leads to more conservative credible

intervals, attributing a higher probability to these extreme observations and thus effectively

improving density forecasting performance.

However, it should be noted that the joint density forecasting performance is not exclu-

sively driven by the pandemic. When we consider the medium and large models, we observe that

for higher-order forecasts, improvements relative to the BVAR arose much earlier and appear to

increase during (or shortly after) turbulent periods.

Next, we consider variable-specific LPLs. For the unemployment rate (see Figure 2b),

we find a picture similar to the one of the joint LPLs: smaller differences for one-month- and

one-quarter-ahead LPLs up to the pandemic and then substantial gains during the pandemic.

This holds for the small and medium dataset. For one-year-ahead LPLs we find that coarsening

already helps shortly after the global financial crisis (GFC), approximately coinciding with the

period where the unemployment rate peaked. This pattern holds for all three model sizes. Only
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Figure 2: Cumulative LPLS differences over time.
Legend: − refers to the one-month-ahead, − to one-quarter-ahead and − to one-year-
ahead forecasts. Shaded areas indicate the NBER recession dates.

for the large-sized model and one-year-ahead forecasts we find a much weaker performance of

the cBVAR between 2010:01 and the pandemic.

For inflation (Figure 2c), we again find small differences between one-month-ahead and

one-quarter-ahead forecast accuracy and all three model sizes. There is again some evidence

that the inflation forecasts arising from the cBVAR become more accurate after the Covid-19

pandemic, a period characterized by a sustained increase in inflation. This pattern is visible

for all forecast horizons except for the one-year-ahead forecast and the small model. In this
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case, we find that cBVAR performs better than the benchmark in the first part of the hold-out

period (2020:01 to around 2009:06), is inferior during the second part of the hold-out (2009:07

to 2020:05) before recovering. When we consider the medium-sized model and one-year-ahead

predictions, we find that after the GFC, the forecast accuracy premium from coarsening in-

creases, and the cBVAR consistently returns more accurate density predictions than the BVAR.

These accuracy improvements also increase during the pandemic and post-pandemic part of the

sample. For the large model, the pattern resembles that of the small model.

The LPLs for the short-term interest rate (Figure 2d) evolve similarly to the other two

series. Small differences in the pre-pandemic period are followed by substantial variation during

the pandemic. Strikingly, we find that there is an appreciable improvement in LPLs during

the zero lower bound period only for the medium-sized model. This is not visible for the small

and large information sets we consider, and, at first glance, appears to be inconsistent with our

findings for the point forecasts. Notice, however, that for LPLs it does not only matter how

well we fit the first moment of the predictive density, but higher order moments also play an

important role.

5.3 How does misspecification change over time?

The previous sections emphasized that coarsening leads to improvements in predictive perfor-

mance, particularly at longer forecast horizons. In this section, we ask how much weight is

actually put on the likelihood function. To do so, we plot the learning rates for the three focus

variables over the hold-out. Doing so gives us a general impression on the degree of misspecifi-

cation and whether this is subject to time-variation.

Figure 3 shows the estimated ϕ′
is for the unemployment rate (in blue), inflation (in red),

and the short-term interest rate (in green) over the hold-out sample. Across the three model

sizes, we observe that ϕi is much smaller than one throughout our hold-out period, pointing

towards a substantial degree of misspecification. Among the focus series, we find that CPI

inflation and short-term interest rates have the lowest learning rates whereas the one of the

unemployment rate is much higher. An interesting finding is that, for all three target series,

adding information to the model seems to increase the estimated learning rates. This finding is

driven by the reduced risk of omitted variables in larger models.
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Figure 3: Estimated likelihood weights over the different training samples for the focus
variables.
Legend: − refers to UNRATE, − to CPIAUCSL and − to FEDFUNDS. Blue shaded
areas indicate the NBER recession dates.

In terms of time variation, we find some rather unsystematic movements in ϕi for all three

variables prior to the pandemic. In some cases, the learning rate slightly increases while in

other cases, we have declining learning rates. However, these movements are relatively small

and should not affect the predictive distribution too much.

However, when we focus on the pandemic period, we find a common pattern across all

models considered: the unemployment rate equation suddenly requires a much lower learning

rate. Again, and consistent with the findings for LPLs over time, this indicates that the sharp

increase in unemployment rates (and quick recoveries after the lockdowns subsided) requires a

more flexible econometric model. Our cBVAR reflects this necessity by producing a much lower

learning rate during these periods.

6 Conclusion

Common practice in empirical macroeconomics is to estimate simple and interpretable models to

derive stylized facts and inform decision making. However, these simple models often suffer from

misspecification of various, and unknown, types, which has a deleterious effect on estimation,

inference, and predictive performance. In this paper, we offer a simple solution to obtain more

robust results. Our proposal is to modify standard Bayesian multivariate econometric models.

Instead of conditioning on the observed data, we propose to condition on the event that there is

a distance between the sampling distribution of the observed data and a hypothetical idealized

sampling distribution. Using relative entropy as a loss metric gives rise to a simple approximation

that amounts to tempering the likelihood by a learning rate, connecting this approach to the
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literature on power posteriors.

Since different endogenous series in a VAR can feature different degrees of misspecification,

we allow for different learning rates across equations. The resulting likelihood is then coupled

with an asymmetric prior, allowing for conjugate updating. To select the learning rates, we use

a fully automatic approach that selects the prior shrinkage parameters and the learning rates

jointly.

We consider an extensive Monte Carlo exercise with a wide range of different DGPs that

are inspired by models actually used by empirical macroeconomists. These differ in terms of the

conditional mean and variance specifications, giving rise to 16 different DGPs. We show that

standard BVARs in the presence of misspecification of different forms produce predictive distri-

butions that are substantially less accurate than those produced by the coarsened counterpart.

Using actual US monthly data, we show that the cBVAR produces more accurate point

and density forecasts than the standard BVAR, with larger gains at longer horizons and when

using small models, and it does not suffer much from the substantial outliers observed during

the pandemic. This suggests that our approach can also be used to obtain more robust inference

in the presence of large outliers.
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A Technical Appendix

A.1 Posterior Distribution

Combining the joint prior and likelihood functions, we can derive the joint posterior distribution

as:

p(θ1, . . . ,θM , σ2
1 . . . , σ

2
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A.2 Simulation of Data Generating Processes

Unless specified otherwise specified, the parameters below are obtained by estimating the cor-

responding specification on US data (using the datasets outlined in Table B.1).

All DGPs have the general form:

yt = A1tyt−1 +A2tyt−2 +BXt + ut + θut−1, ut ∼ p(ut|0M ,Σt), (5)

where yt is an M -dimensional vector of endogenous variables at time t and Xt is a K = 5-

dimensional vector of additional exogenous regressors at time t. The associated parameter

matrices are given byA1,t,A2,t,B. The reduced- form shocks at time t are denoted ut. It follows

some distribution p(·|0M ,Σt) with mean 0M and variance-covariance matrix Σt = A0DtA0.

Here, A0 is a lower triangular matrix with ones on the main diagonal and Dt a diagonal matrix

containing the error variances at time t. Lastly, θ is a moving average coefficient matrix.
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We consider four different kinds of DGPs with respect to modeling the conditional mean

and the error structure. These are outlined in further detail below.

A.2.1 Variations with respect to the conditional mean

1. Our baseline is a linear VAR (”Linear”) where we set A1t = A1,A2t = A2, ∀t = 1, . . . , T

andB = 0M×K . The parameter matricesA1 andA2 are obtained by estimating a VAR(2)

following Giannone, Lenza, and Primiceri (2015). This model has been applied extensively

in the empirical literature, a recent example is Antolin-Diaz and Surico (2025).

2. In the second case, the DGP arises from a smooth transition model (”Transition”) and

we set Apt = stApa + (1 − st)Apb, with Apa,Apb being the baseline regimes for p = 1, 2.

The mixture variable st ∈ [0, 1] is given by the following equation:

st =
1

1 + exp((−γ)zt)
,

where we set the speed of transition parameter γ = 3 and simulate zt arise from a random

walk with unit variance. We set B = 0M×K and, conditional on st (which is known

given {zt}Tt=1), estimate the parameter matrices again using BVAR(2) models on the

corresponding macro time series. An recent application of this approach is Caggiano,

Castelnuovo, and Nodari (2022).

3. The third DGP follows a break-point model (”Break”) such that the VAR coefficients are

given by Apt = Apk, p = 1, 2, where Apk are changing every 50 observations. We again

set B = 0M×K and obtain the coefficients through BVAR(2) models estimated over the

respective sub-samples. A model of this kind has recently been applied by Check and

Piger (2021).

4. In the case of the DGP featuring exogenous regressors (”Exo”), we let A1t = A1,A2t =

A2, ∀t = 1, . . . , T (as in the linear baseline model) but allow B to be a non-zero coefficient

matrix which each of its elements drawn from a normal distribution with mean zero and

variance 1
M2 . We simulate each element of Xt from an AR(1) model with persistence

parameter 0.95 and error variance 0.0625. An example of this is Forni, Gambetti, and

Sala (2014).
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A.2.2 Variations with respect to the error structure

1. For the DGP labeled ”Gaussian” we let the errors arise from a homoskedastic Gaussian

distribution p(·) = N (0M ,D) (such that Dt = D ∀t = 1, . . . , T ). D has been calibrated

by estimating a VAR(2) model following Giannone, Lenza, and Primiceri (2015). We set

θ = 0M×M . This simple model has been extensively applied in the empirical literature, a

recent example is again Antolin-Diaz and Surico (2025).

2. Additionally, we explore a similar setup (labeled ”Student”) with p(·) = t3(0M ,D) being

the Student-t distribution with three degrees of freedom and againDt = D (∀t = 1, . . . , T )

and θ = 0M×M (”Student”). Recent work by Karlsson, Mazur, and Nguyen (2023)

emphasizes the empirical importance of allowing for heavy tails in the error distribution.

3. The DGP considering stochastic volatility (”SV”) sets assumes that the natural logarithm

of the error variances evolves according to the following AR(1) model:

ln(Dt) = ln(D) + 0.95 · (ln(Dt−1)− ln(D)) + νt

where each element of νt is normally distributed with mean zero and variance η2 = 0.05.

We let p(·) = N (0M ,Dt) and θ = 0M×M . A recent example of Vector autoregressions

featuring stochastic volatility is Carriero, Clark, and Marcellino (2018).

4. For the DGP with a moving-average term (”MA”) we set p(·) = N (0M ,D), (Dt = D ∀t =

1, . . . , T ). We let θ be non-zero and draw each of its elements from a normal distribution

with mean zero and variance 1
M2 . A DGP along these lines has recently been considered

in González-Casasús and Schorfheide (2025).

B Data appendix

We provide information on the variables comprising the small-, medium- and larged sized models

in Table B.1. The table also contains their respective FRED-MD variable codes and information

on the transformations we applied. To preserve their cointegrating relationship, all variables

(expect price series) are typically in (log-)levels
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Table B.1: Variables used in the small, medium and larged models alongside their FRED-MD codes and transformations. Transfor-
mation codes refer to the following: 1 = level, 4 = log-level, 5 = log-first differences.

FRED-MD Code Variable Transformation Small Medium Large

UNRATE Civilian Unemployment Rate 4 X X X
CPIAUCSL CPI : All Items 5 X X X
FEDFUNDS E?ective Federal Funds Rate 1 X X X
AWHMAN Avg Weekly Hours : Manufacturing 4 X X
M2REAL Real M2 Money Stock 5 X X
S&P 500 S&P s Common Stock Price Index: Composite 5 X X
INDPRO IP Index 5 X X
T10YFFM 10-Year Treasury C Minus FEDFUNDS 1 X X
CUSR0000SAC CPI : Commodities 5 X X
CUMFNS Capacity Utilization: Manufacturing 4 X
CE16OV Civilian Employment 5 X
CLAIMSx Initial Claims 4 X
RPI Real Personal Income 5 X
CES3000000008 Avg Hourly Earnings : Manufacturing 5 X
HOUST Housing Starts: Total New Privately Owned 5 X
S&P PE ratio S&P s Composite Common Stock: Price-Earnings Ratio 4 X
DPCERA3M086SBEA Real personal consumption expenditures 5 X
RETAILx Retail and Food Services Sales 5 X
TOTRESNS Total Reserves of Depository Institutions 5 X
NONREVSL Total Nonrevolving Credit 5 X
GS10 10-Year Treasury Rate 1 X
BAAFFM Moody s Baa Corporate Bond Minus FEDFUNDS 1 X
EXJPUSx Japan / U.S. Foreign Exchange Rate 1 X
EXUSUKx U.S. / U.K. Foreign Exchange Rate 1 X
WPSFD49207 PPI: Finished Goods 5 X
OILPRICEx Crude Oil, spliced WTI and Cushing 5 X
DSERRG3M086SBEA Personal Cons. Exp: Services 5 X
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Figure C.1: Observed path versus one-month-ahead predictive distributions for each of
the focus variables.
Legend: − are the observed values, − indicates predictions of the cBVAR and − those
of the standard BVAR. Lines denote the posterior median and shaded areas the 90%, 95%
and 99% credible intervals (from dark to light). Blue shaded areas indicate the NBER
recession dates.

C Additional Empirical Results

Table C.2 contains mean squared errors (based on the posterior median) for the Monte Carlo

exercise. Again, results for the cBVAR are in relative terms such that scores smaller than one

reflect forecast gains.

Additionally, we plot the predictive distributions for each of the focus variables and model

sizes at the one-month-ahead (Figure C.1), one-quarter-ahead (Figure C.2) and one-year-ahead

(Figure C.3)
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Table C.2: Relative MSE scores for predictive distributions.

Gaussian Student SV MA

rel. MSE rel. MSE rel. MSE rel. MSE

One-month-ahead predictions

S
m
a
ll
-s
iz
e
d

Linear 1.01 1.02 1.01 1.01
Break 0.99 *** 1.00 0.99 *** 0.99 ***
Exo 1.00 1.03 1.01 1.01
Transition 1.03 1.05 1.03 1.01

One-quarter-ahead predictions
Linear 1.01 1.01 1.01 1.01
Break 0.98 *** 0.98 *** 0.98 *** 0.98 ***
Exo 0.98 ** 1.02 0.99 ** 1.00
Transition 1.03 1.06 1.03 1.02

One-year-ahead predictions
Linear 1.04 1.05 1.05 1.00
Break 0.98 *** 0.99 0.99 *** 0.99 ***
Exo 0.96 *** 1.00 0.96 *** 0.99 *
Transition 1.03 1.11 1.03 0.99 ***

One-month-ahead predictions

M
e
d
iu
m
-s
iz
e
d

Linear 0.99 *** 1.00 1.00 1.02
Break 0.92 *** 0.91 *** 0.92 *** 0.97 ***
Exo 0.99 ** 0.98 *** 0.98 *** 1.04
Transition 1.01 1.04 1.01 1.02

One-quarter-ahead predictions
Linear 0.98 *** 0.98 *** 0.99 *** 0.98 ***
Break 0.89 *** 0.88 *** 0.89 *** 0.93 ***
Exo 0.95 *** 0.95 *** 0.95 *** 0.99
Transition 1.01 1.07 1.02 1.02

One-year-ahead predictions
Linear 1.02 1.05 1.03 0.98 ***
Break 0.97 *** 1.02 1.00 0.98 ***
Exo 0.92 *** 0.98 0.95 ** 0.92 ***
Transition 1.02 1.18 1.04 1.00 *

One-month-ahead predictions

L
a
rg

e
-s
iz
e
d

Linear 0.96 *** 0.96 *** 0.96 *** 0.96 ***
Break 0.94 *** 0.94 *** 0.94 *** 0.92 ***
Exo 0.92 *** 0.93 *** 0.92 *** 0.90 ***
Transition 1.01 1.02 1.01 1.02

One-quarter-ahead predictions
Linear 0.90 *** 0.90 *** 0.90 *** 0.87 ***
Break 0.93 *** 0.94 *** 0.92 *** 0.91 ***
Exo 0.88 *** 0.87 *** 0.88 *** 0.86 ***
Transition 1.01 1.02 1.01 1.00 ***

One-year-ahead predictions
Linear 0.96 *** 0.96 *** 0.97 *** 0.93 ***
Break 0.99 ** 1.01 0.99 *** 0.98 ***
Exo 0.91 *** 0.92 *** 0.92 *** 0.88 ***
Transition 1.00 *** 1.03 1.00 0.99 ***

Notes: Results are averaged over all draws and test sets for each DGP. Stars indicate
p-values from a one-sided t-test with alternative hypothesis that cBVAR produces smaller
MSE scores.
Legend: . ∼ p < 0.16; ∗ ∼ p < 0.1; ∗∗ ∼ p < 0.05; ∗∗∗ ∼ p < 0.01
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Figure C.2: Observed path versus one-quarter-ahead predictive distributions for each
of the focus variables.
Legend: - indicates predictions of the cBVAR and - those of the standard BVAR. Lines
denote the posterior median and shaded areas the 90%, 95% and 99% credible intervals
(from dark to light). Blue shaded areas indicate the NBER recession dates.
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Figure C.3: Observed path versus one-year-ahead predictive distributions for each of
the focus variables.
Legend: - indicates predictions of the cBVAR and - those of the standard BVAR. Lines
denote the posterior median and shaded areas the 90%, 95% and 99% credible intervals
(from dark to light). Blue shaded areas indicate the NBER recession dates.
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