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1 Introduction

Many empirical studies deal with fractional response data that are bounded in the [0,1]

interval and, in addition, contain a significant amount of observations at the boundary

values of 0 or 1. In their seminal paper Papke and Wooldridge (1996) propose a one-part

fractional response model that extends the generalized linear model (GLM) literature from

statistics.1 In particular, they introduce a quasi-maximum likelihood (QMLE) approach

that only requires the correct specification of the conditional mean to consistently estimate

one-part fractional response models. In this framework, there is no need for an ad hoc

transformation of the boundary values of 0 or 1.2

If the data at hand contain a large share of these boundary values, the econometric

literature alternatively offers two-part models that assume a different data generating

process (DGP) for the zeros or ones, respectively.3 In order to empirically discriminate

between the competing one-part and two-part fractional response models, the literature

so far typically applies a P test for non-nested hypotheses as described in Davidson and

MacKinnon (1981) and Ramalho, Ramalho and Murteira (2011).

In many empirical applications the fractional response variable is defined as ratio of

integers such as e.g., the share of employees participating in a voluntary pension plan

(Papke and Wooldridge 1996), where the group size is known. This additional group

size information can explicitly be used for the empirical analysis.4 Starting from this

observation, we propose two-part models that exploit information on the group size and,

additionally, nest the one-part alternatives following the approach suggested by Lin and

Schmidt (1984) and Mullahy (1986). Lin and Schmidt (1984) propose an LM test of the

Tobit model against an alternative two-part model that nests the Tobit model as a special

case, while Mullahy (1986) applies this approach to count data hurdle models.

In this paper, the first two-part model is based on the binomial likelihood framework,

while the second ones additionally allows for overdispersion in the data by assuming a

1In a more recent paper, Papke and Wooldridge (2008) discuss fractional response models for panel
data. Ramalho et al. (2011) provide a comprehensive up-to-date overview on the econometrics of
fractional response models.

2As an alternative to this QMLE approach, scholars have also proposed to assume a beta distribu-
tion and estimate the resulting model via maximum likelihood (see, e.g., Paolino 2001, Kieschnick and
McCullough 2003, Ferrari and Cribari-Neto 2004). Beta regression models, however, are not able to deal
with the boundary values of 0 and 1 without an ad hoc transformation.

3See, e.g., Mullahy (1986), Lambert (1992), Cameron and Trivedi (2005) Wooldridge (2002, Problem
19.8), Ramalho and Silva (2009, 2013), Ramalho et al. (2011) and Oberhofer and Pfaffermayr (2012). In
the beta regression framework, two-part models are proposed by e.g., Cook, Kieschnick and McCullough
(2008) and Ospina and Ferrari (2012). Hall (2000) proposes a zero-inflated binomial model.

4In the context of multivariate fractional response variables, Murteira and Ramalho (2014) discuss
the usefulness of the group size information for formulating econometric models that are based on the
multinomial and Dirchilet-multinomial distributions, respectively.
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beta-binomial likelihood function. This latter model, for example, is able to account for

correlated individual zero and one decisions that could be triggered by group specific

random effects.

Applying a maximum likelihood framework, this paper derives explicit formulas for the

Wald and the LM tests, respectively, which could be used as alternatives to the available

non-nested P test. Two Monte Carlo simulation exercises reveal that both proposed

tests are properly sized and equipped with sufficient power to discriminate between the

two-part model and its (nested) one-part alternative. Finally, we apply the different

estimators to firm-level data on 401(k) pension plan participation rates as used in Papke

and Wooldridge (1996) and document that participation decisions are highly correlated

within firms.

The remainder of the paper is organized as follows: Section 2 presents the nested

two-part models for fractional response variables that are defined as ratio of integers.

Section 3 reports the main findings from two small-scale Monte Carlo exercises. Section

4 offers an empirical application for 401(k) plan participation rates and in Section 5 we

provide some concluding remarks.

2 Generalized Two-Part Fractional Response Mod-

els

2.1 The Generalized Binomial Two-Part Model

The typical fractional response model is based on the Bernoulli or binomial distribution.

Assume there are i = 1, . . . , N groups (e.g., firms) in which j = 1, . . . , ni units (workers)

are confronted with a 0/1 decision (e.g., to participate in a voluntary pension plan). We

focus on situations where the number of units, ni, is observed as in Papke and Wooldridge

(1993, 1996) and assume that ni is exogenously given so that it is appropriate to condition

on it. The probability that unit j in group i opts for 1 (e.g., to participate in a voluntary

pension plan) is denoted by θi which is assumed to be group- but not unit-specific. The

number of units within a group choosing 1 is denoted by ki and the corresponding observed

share (at the group level) is given by yi = ki
ni

with 0 ≤ yi ≤ 1 or ki = niyi, respectively.5

Following Papke and Wooldridge (1996), for such a set-up the conditional expectation of

5Note, in comparison to the fractional response model analyzed in Papke and Wooldridge (1996), the
individual contributions to the likelihood, the estimated score and the estimated information matrix are
all multiplied by ni in this model (see also Papke and Wooldridge, 1993, pp. 10-11).
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the fractional response variable yi is group-specific and can be specified as

E(yi|xi, ni) = G(xiβ), i = 1, . . . , N, (1)

where (the 1 × k vector) xi refers to a set of i-specific explanatory variables with the

corresponding parameter vector β. Typically, G(.) is a cumulative distribution function

(cdf) such as the logistic function G(z) = exp(z)/(1 + exp(z)) which maps z to the (0, 1)

interval.6 In this case, the group specific contributions to the log likelihood can be written

as

ln(f(β; yi, xi)) = ni(yi ln(G(xiβ)) + (1− yi) ln(1−G(xiβ))) + const. (2)

Following Wooldridge (2002, Problem 19.8), Cameron and Trivedi (2005, p. 680),

Ramalho and Silva (2009, 2013), Ramalho et al. (2011) and Oberhofer and Pfaffermayr

(2012), one may consider a two-part model to explicitly account for an excessive number

of boundary values. Here, we concentrate on the case of boundary values at one, but

similar arguments apply to the case of an excessive number of zeros. In contrast to the

one-part model, the two-part alternative assumes a different data generating process for

the boundary values. For notational simplicity, the explanatory variables in the first and

second part of the model are assumed to be the same, but in general they could differ.

Formally, this (generalized) two-part model can be defined as in Cameron and Trivedi

(2005, pp. 545, 680) and is given by

f(yi|xi, ni) =

{
P1(ni, xi) if yi = 1 or ki = ni

(1− P1(ni, xi))
P2(ki,xi)

1−P2(ni,xi)
if yi < 1 or ki < ni

, (3)

where P1(ni, xi) = P1(Ki = ni, xi) refers to the first part of the model and P2(ki, xi) =

P2(Ki = ki, xi), ki = 1, ..., ni to its second part. Under independent unit decisions, Ki is

assumed to be distributed as Binomial with conditional probabilities

P1(ni, xi) = θnii1

P2(niyi, xi) =

(
ni
niyi

)
θniyii2 (1− θi2)ni−niyi . (4)

where for 0 < θi1 < 1 the probability of yi amounting exactly to 1 is given by θnii1 under

P1(ni, xi) and θnii2 under P2(ni, xi).
7

6See Ramalho et al. (2011, 2013) for a comprehensive discussion on alternative functional forms for
one-part and two-part fractional response models.

7In the one-part model it holds that P2(ni, xi) = P1(ni, xi) or θi1 = θi2 and f(yi|xi, ni) reduces to
P2(ki, xi).
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Under this two-part model, we specify the probability of observing a share of 1 by

P1(ni, xi) = θnii1 assuming θi1 = G(xiγ). The second part of the model for values yi < 1 is

based on the conditional distribution:

f(yi|yi < 1, xi, ni) = (1− P1(ni, xi))
P2(ki, xi)

1− P2(ni, xi)

implying that the probability distribution f(yi|xi, ni) is divided by 1−G(xiβ)ni to ensure

that the conditional probabilities sum up to 1. The conditional mean of the two-part

model, thus, is given by8

E(yi|xi, ni) = (1− P1(ni, xi))E(yi|yi < 1, xi, ni) + P1(ni, xi)

= 1−G(xiγ)ni

1−G(xiβ)ni
(G(xiβ)−G(xiβ)ni) +G(xiγ)ni . (5)

Equation (5) shows that in case of γ = β the conditional mean of this two-part model

reverts to the simple one-part formulation. The standard two-part literature typically

uses a simplified version of the conditional mean which ignores the fact that the second

part of the model also assigns a non-zero probability to boundary values. For example,

Ramalho and Silva (2009, p. 630) specify the conditional mean E(yi|yi > 0, xi, ni) as

G(xiβ).

Defining zi = 1 if yi = 1 and 0 otherwise, the likelihood of the two part-model contains

the individual contributions

ln(f(γ, β; yi, xi)) = (1− zi)[ni(yi ln(G(xiβ)) + (1− yi) ln(1−G(xiβ)))− ln(1−G(xiβ)ni)]

+(1− zi) ln(1−G(xiγ)ni) + zini ln(G(xiγ)) + constant. (6)

Under this specification maximum likelihood estimation is straight forward, since it sep-

arates into the estimation of the model explaining P (yi = 1|xi, ni) using all observations

and the estimation of the fractional response model for the observations with yi < 1 only.

In the following, we assume that the distributions, upon which the one-part and two-

part models are based, are correctly specified and concentrate on maximum likelihood

estimation.

The main advantage of the proposed two-part model is that it nests the one-part

fractional response model since, as demonstrated in equations (5) and (6), under θnii1 = θnii2

8In case of zero boundary values the conditional mean of this two-part fractional response model
modifies to

E(yi|xi, ni) = P (yi > 0|xi, ni)E(yi|yi > 0, xi, ni) =
1− (1−G(xiγ))ni

1− (1−G(xiβ))ni
G(xiβ).
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(or equivalently, γ = β) the two-part-model reverts to the one-part fractional response

model.9 In case of xi being the same for the one-part and the two-part model and

their parameters being equal under (γ = β) the two models coincide and have the same

likelihood functions. This hypothesis can easily be tested by an LM or a Wald test of

H0 : γ = β. If one or both parts of the two-part model contain additional explanatory

variables denoted by w1i and w2i with parameter vectors φ1 and φ2, respectively, the

underlying H0 to test is γ = β, φ1 = 0, φ2 = 0.10

In Appendix A1, we derive an LM test which is based on the estimated parameters

of the one-part fractional response model that are indexed by OP . Similar, to Mullahy

(1986) the LM test uses the parametrization γ = β+δ and tests H0: δ = 0 vs. H0: δ 6= 0.

It is easy to calculate and is given by

LM = ŝ′δ,OP

(
A−1(β̂OP ) +

(
B(β̂OP )− A(β̂OP )

)−1
)
ŝδ,OP . (7)

Thereby, ŝδ,OP =
∑N

i=1 Ĉiβ,OP (zi−G(xiβ̂OP )ni)x′i and Ĉiβ,OP = ni
1−G(xiβ̂OP )

1−G(xiβ̂OP )ni
. A(β̂OP ) =∑N

i=1 Ĉ
2
iβ,OP (1−G(xiβ̂OP )ni)G(xiβ̂OP )nix′ixi and B(β̂OP ) =

∑N
i=1 ni((1−G(xiβ̂OP )) ∗

G(xiβ̂OP ))x′ixi. Note xi is defined as 1× k vector. Under standard assumptions this LM

test is asymptotically distributed as χ2(k).

Appendix A2 derives a Wald test statistic that uses the parameter estimates of the

two-part model with index TP and is given by11

Ŵ = (γ̂TP − β̂TP )′
(
A(γ̂TP )−1 +

(
B(β̂TP )− A(β̂TP )

)−1
)−1

(γ̂TP − β̂TP ), (8)

which is likewise asymptotically distributed as χ2(k).

9In a related setting, Lin and Schmidt (1984) derive an LM test for testing a Tobit model against
the more general Cragg’s two-part model under normality using a similar nesting hypothesis. Mullahy
(1986) proposes LM and Hausman test statistics in order to discriminate between one- and two-part
(hurdle) count data models.

10In the quasi maximum likelihood framework, the literature commonly applies non-nested P tests
to discriminate between the one-part and two-part fractional response models. Following Davidson and
MacKinnon (1981) and Ramalho et al. (2011) the P test for the null hypothesis that the one-part model
is the true one and the two-part model is the alternative is based on an artificial regression. However, in
their propositions 4.1.2 and 4.3.2 Gourieroux, Monfort and Trognon (1984) prove that under the nested
parametrization this test is not applicable.

11When applying the Wald test it is crucial to use the weighted form of the likelihood given in (3) or
to assume ni = n. This is necessary because the likelihood is not defined for a group size of ni = 1.
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2.2 The Beta-Binomial Two-part Model

In many cases the assumption of independent zero-one decisions of the individuals is not

plausible as there may exist pronounced overdispersion. To give an example, the pres-

ence of group specific random effects generates equi-correlation within groups (see, e.g.,

Heckman and Willis 1977 and McCulloch and Searle 2001) and violates the independence

assumption of the binomial distribution made above. Following Heckman and Willis

(1977), Prentice (1986), McCulloch and Searle (2001) and Santos Silva and Murteira

(2009) for these situations a beta-binomial model forms a plausible and tractable al-

ternative.12 While for such situations, one still obtains consistent estimates using the

Bernoulli-QMLE for the one-part model under H0 (see Papke and Wooldridge 1996),

the two-part model based on the binomial distribution (6) cannot be estimated consis-

tently when the beta-binomial is the true data generating process. As a result, the above

proposed Wald and LM tests are also invalid in this more general setting.

Following Prentice (1986), we assume that the random variable Ki is distributed as

beta-binomial taking values ki = niyi with probabilities

P2(Ki = ki, xi) =

(
ni
ki

) 1∫
0

πki+ai2−1
i (1− πi)ni−ki+bi2−1 Γ(ai2+bi2)

Γ(ai2)Γ(bi2)
dπi

=

(
ni
ki

)
Γ(ki+ai2)Γ(ni−ki+bi2)

Γ(ni+ai2+bi2)
Γ(ai2+bi2)

Γ(ai2)Γ(bi2)
=

(
ni
ki

)ki−1∏
j=0

(ai2 + j)
ni−ki−1∏
j=0

(bi2 + j)

ni−1∏
j=0

(ai2 + bi2 + j)

.

This distribution results from a data generating process that is based on Ki|πi2 ∼
Bin(ni, πi2) and πi2 ∼ Beta(ai2, bi2). In order to parametrize the model, we specify

θi2 := E[πi|xi] = ai2
ai2+bi2

, c = ai2 + bi2,

or

ai2 = cθi2, bi2 = c(1− θi2), θi2 = exiβ

1+exiβ

This model introduces intra-group correlation und, therefore, overdispersion (see Prentice

1986 and McCulloch and Searle 2001). A model with group-specific random effects that

follow a Beta(ai2, bi2) distribution yields the same model structure (see McCulloch and

Searle 2001).

12The Dirchilet-multinomial distribution allows to generalize the beta-binomial model for multivariate
fractional response data with more than two alternative choices (see, e.g., Johnson, Kemp and Kotz 2005,
Mullahy 2010, Murteira and Ramalho 2014).
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Letting, Ki =
∑ni

j=1Kij, where Kij are correlated Bernoulli-random variables that

take the value 1 with probability πi and πi ∼ Beta(ai2, bi2), the variance and covariance

are given by

V ar[Ki] = ni
aibi
c2

+ ni (ni − 1) aibi
c2(1+c)

(9)

= niθi2(1− θi2)(1 + (ni − 1)ρ),

and

Cov[Kij, Kil] = aibi
c2(1+c)

and ρ = corr[Kij, Kil] = 1
1+c

, (10)

respectively.13 For the boundary value Ki = ni we specify P1(ni, xi) analogously and

assume that

P1(ni, xi) =
Γ (ni + ai1)

Γ (ni + ai1 + bi1)

Γ (ai1 + bi1)

Γ (ai1)
, (11)

where a0 = cθi1, bi1 = c(1 − θi1). For P1(ni) the nested specification is given by θi1 =
exiγ

1+exiγ
= exi(β+δ)

1+exi(β+δ)
.

We impose the same parameter c for P1(ni) and P2(ki) as a different value for P1(ni)

remains unidentified for zero-one dependent variables. For ease of exposition c is assumed

to be independent of i. Principally, the parameter c could be made dependent on explana-

tory variables xi.
14 In this case, a convenient parametrization would be ci = 2(eziϑ−1)−1

so that ρ = 2 eziϑ

1+eziϑ
− 1, where zi denotes the vector or explanatory variables for ci and ϑ

the corresponding parameter vector (see Prentice 1986). This parametrization guarantees

that the coefficient of intra-group correlation is restricted to the [0,1] interval.

Given the maximum likelihood estimates (see Appendix B for details) of the uncon-

strained model, it is straight forward to use Wald or likelihood ratio (LR) tests for model

discrimination between the two-part and one-part models. The resulting H0 to test would

again be H0 : γ = β or δ = 0 vs. H1 : γ 6= β or δ 6= 0. An LM test is infeasible in this

context, as a simple closed form of the expected Hessian of that model cannot be derived

analytically under H0.

13Note, this model only allows for positive intra-group correlation as one has to assume that ai > 0
and bi > 0. Prentice (1986) proposes a transformation of the Beta-binomal distribution that is also able
to handle negative intra-group correlation.

14In the empirical application in Section 4 we introduce one specification where c depends on the
matching rate, firm size and the age of the pension plan. For further details see columns (7) and (8) in
Table 3 and the corresponding discussion in the text.
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3 Monte Carlo Exercises

3.1 The Binomial Two-Part Model

To investigate the performance of the proposed tests in finite samples we set up two small-

scale Monte Carlo simulation exercises. In this section we concentrate on independent

individual decisions and, thus, apply the generalized binomial two-part model. In Section

3.2 we introduce a group-specific random effect and examine the performance of our tests

for the beta-binomial case.

For the binomial model, we generate Bernoulli random variables using the logistic

cdf G(xi + 0.5), where xi is distributed uniformly over [0, 5] and held fixed in repeated

samples. To obtain a share variable we divide the resulting Bernoulli random number

by ni and take ni ∼ iid N(100, 5). In the lower panel of Table 1 we increase n̄ to

200. The probabilities for the boundary values of 1 are based on θi1 = G(α(xi + 0.5))ni ,

where α varies from 0.95 to 1.05 so that at α = 1 the one-part model is the true one. The

dummy variable for boundary values takes the value 1 if a generated uniformly distributed

random variable is lower than θi1 and 0 otherwise. We run each Monte Carlo experiment

10,000 times for sample sizes of 500 and 1,000 observations, respectively, and calculate

the size of the tests as the shares of rejections at α = 1 and a nominal size of 5 percent.

Hence, the corresponding 95-percent confidence interval of the simulated size is given by

[0.046,0.054]. The power of each test is defined as the share of rejections at α 6= 1.

The results of this simulation exercise are summarized in Table 1. The second and

the fifth columns report the share of ones for sample sizes of N = 500 and N = 1, 000,

respectively. Concentrating on N = 500, under H0, 14 percent of all observations take

on the boundary value of 1. Increasing n̄ to 200 reduces the share of ones to 6 percent

under H0. Columns 2 and 5 also reveal that an increase in α leads to an increase in the

share of boundary values.

The Monte Carlo simulation results indicate that the simulated size of the Wald and

the LM tests is within the 95-percent confidence interval in all experiments, ranging from

0.046 to 0.051. In a similar vein, both tests have power in both directions α < 1 and

α > 1, and as expected their power increases with sample size. To give an example, for

N = 1, 000, n̄ = 200 and α = 1.05 the Wald and LM tests amount to 0.791 and 0.823,

respectively. To sum up, both the power and size of these tests are suitable and they

might be considered as valuable alternatives to the already available non-nested P test if

independent 0/1 decisions within groups can be assumed and ni is observed.

8



Table 1: Monte Carlo Simulation for the Binomial Model, 10,000 Replications

α Share Wald test LM test Share Wald test LM test
of ones of ones

N = 500 N = 1, 000

n̄ = 100

0.95 0.11 0.428 0.385 0.11 0.748 0.725
0.96 0.11 0.287 0.253 0.12 0.531 0.503
0.97 0.12 0.175 0.151 0.12 0.326 0.299
0.98 0.12 0.103 0.087 0.13 0.167 0.149
0.99 0.13 0.059 0.053 0.13 0.080 0.069
1.00 0.14 0.046 0.049 0.14 0.049 0.051
1.01 0.14 0.061 0.071 0.15 0.072 0.082
1.02 0.15 0.101 0.123 0.15 0.162 0.178
1.03 0.15 0.178 0.205 0.16 0.323 0.348
1.04 0.16 0.269 0.302 0.16 0.517 0.539
1.05 0.16 0.412 0.449 0.17 0.719 0.737

n̄ = 200

0.95 0.04 0.419 0.343 0.04 0.754 0.710
0.96 0.04 0.272 0.212 0.05 0.544 0.491
0.97 0.05 0.166 0.126 0.05 0.340 0.291
0.98 0.05 0.095 0.069 0.05 0.163 0.132
0.99 0.06 0.058 0.049 0.06 0.074 0.062
1.00 0.06 0.046 0.048 0.06 0.049 0.050
1.01 0.06 0.062 0.081 0.07 0.084 0.101
1.02 0.07 0.113 0.145 0.07 0.179 0.214
1.03 0.07 0.192 0.242 0.08 0.357 0.402
1.04 0.08 0.319 0.380 0.08 0.586 0.630
1.05 0.08 0.460 0.526 0.08 0.791 0.823

3.2 The Beta-Binomial Two-Part Model

This subsection briefly discusses the main findings from a second Monte Carlo exercises

that investigates the power and size of Wald and LR tests for the beta-binomial model

for fractional response data that are defined as fractions of integers.15

We generate beta-binomial random variables assuming that ci ∈ {1, 3} which induces

inter-group correlation ρ of 0.5 and 0.25, respectively. With ρ at hand, we draw random

numbers from the Beta distribution in order to obtain group-specific probabilities. These

probabilities in turn are used when drawing final (beta-)binomial random variables. The

probabilities for the boundary values of 1 are based on ai1
c

= θi1 = G(α(0.75xi + 0.5)),

while the second part is based on G(0.75xi + 0.5). The size of the Wald and LR tests

is again measured as share of rejections at α = 1.0 and the power can be inferred from

experiments with α 6= 1.0.

15As already pointed out, for this model no closed form solution of the expected Hessian can be derived
and thus LM tests are not feasible in this setting.
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Table 2: Monte Carlo Simulation for the Beta-Binomial Model, 10,000 Replica-
tions

ρ α Share Wald test LR test Share Wald test LR test
of ones of ones

N = 500 N = 1, 000

n̄ = 100

0.5 0.6 0.14 0.343 0.494 0.14 0.734 0.805
0.5 0.8 0.18 0.068 0.144 0.18 0.167 0.243
0.5 1.0 0.23 0.047 0.049 0.23 0.051 0.055
0.5 1.2 0.28 0.168 0.113 0.29 0.242 0.180
0.5 1.4 0.34 0.398 0.277 0.34 0.625 0.511

0.25 0.6 0.14 0.734 0.805 0.02 0.987 0.991
0.25 0.8 0.18 0.167 0.243 0.03 0.538 0.582
0.25 1.0 0.23 0.051 0.055 0.050 0.048 0.052
0.25 1.2 0.29 0.242 0.180 0.08 0.628 0.597
0.25 1.4 0.34 0.625 0.511 0.12 0.997 0.997

Table 2 reports the results from the Monte Carlo exercise for ni ∼ iid N(100, 5),

sample sizes of 500 and 1,000 observations, respectively again using 10,000 replications.

The within-group correlation is 0.5 (0.25) in the upper (lower) part of Table 2. To start

with, this Monte Carlos exercise indicates that the Wald and LR tests that are obtained

from the estimation of the Beta-binomial model are all properly sized. More precisely,

for α = 1.0 the share of rejections ranges from 0.047 to 0.055. Both tests also exhibit

sufficient power in both directions. Moreover, the power increases with sample size and

tends to be larger for lower values of ρ. To sum up, this small Monte Carlo exercise

indicates that the Beta-binomial two-part model is an attractive alternative for fractional

response data that are characterized by inter-group correlation which might be induced

by group-specific random effects. Moreover, the suggested Wald and LR tests seem to

be useful to discriminate between the one-part and two-part models in this more general

setting.

4 An Empirical Application: The 401(k) Pension

Plan Participation Rates

This section offers an application of the nested two-part fractional response models for

fractional responses defined as ratios of integers using 401(k) pension plan participation

rates data that have also been used by Papke and Wooldridge (1996). In order to compare

our estimation results with the non-weighted one-part model proposed by Papke and
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Wooldridge (1996) we also replicate their results.16 Moreover, the beta-binomial model

also allows to highlight that the 401(k) plan participation rates are characterized by non-

negligible intra-firm correlation. Finally, we document the usefulness of the proposed

Wald, LM and LR tests for discriminating between one-part and two-part fractional

response models.

In their empirical application, Papke and Wooldridge (1996) model the participation

in 401(k) pension plans using a sample of 4,734 US manufacturing firms. The dependent

variable (PRATE) is measured as the fraction of active 401(k) pension plan accounts

relative to the overall number of eligible employees which amounts to one in 42.73 percent

of all observations (i.e., 2,023 firms). The vector of covariates contains a firm’s matching

rate (MRATE), the firms overall number of employees (log (EMP)), the pension plan’s age

(AGE) as well as an indicator variable (SOLE) that takes on the value of 1 if the 401(k)

pension plan is the only one offered by the firm. In their most general specification,

Papke and Wooldridge (1996) include squared terms of the former three covariates in

order to control for additional non-linearities. Further details on different specifications

and sub-sample results can be found in Papke and Wooldridge (1996).

Table 3 reports the parameter estimates for various different fractional response mod-

els. To start with, column (1) replicates the results from column (4) of Table III in

Papke and Wooldridge (1996). These results are based on the non-employment weighted

QMLE estimator for the one-part fractional response model. In column (2) we apply

the same QMLE estimator but additionally weight the observations by each firm’s num-

ber of employees. Columns (3) and (4) report the results from the generalized binomial

two-part fractional response model. Thereby, column (4) reports the restricted model

results where the parameters are the same in both parts of the model. Note, column (4)

contains the same parameter estimates as column (2), but the standard errors are much

smaller. The reason is that the latter are MLE-estimates under the assumption of known

group sizes and independent unit decisions within groups (i.e., absence of overdispersion).

Papke and Wooldridge (1996) calculate robust standard errors to account for potential

overdispersion in the data. Finally, columns (5) to (8) report estimation results from

the beta-binomial fractional response model that explicitly allows for overdispersion in a

flexible MLE-setting.

The parameter estimates reported in Table 3 indicate that in qualitative terms the

results are similar across all different models as well as across both parts of the two-

part models. Thereby, the first part corresponds to the probability to observe full-

participation while the second part estimates the share of participants for firms with

16Oberhofer and Pfaffermayr 2012 provide a comprehensive replication exercise of Papke and
Wooldridge (1996) and alternatively estimate a standard two-part fractional response model.
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Table 3: Estimation results: 401(k) plan participation rates

(1) (2) (3) (4) (5) (6) (7) (8)
Variable

First Part

MRATE 1.313∗∗∗ 1.372∗∗∗ 1.349∗∗∗ 1.779∗∗∗ 1.203∗∗∗ 1.220∗∗∗

(0.083) (0.002) (0.085) (0.085) (0.097) (0.068)
MRATE2 −0.221∗∗∗ −0.290∗∗∗ −0.228∗∗∗ −0.312∗∗∗ −0.246∗∗∗ −0.288∗∗∗

(0.022) (0.001) (0.022) (0.022) (0.024) (0.018)
log(EMP ) 0.403∗∗∗ −0.602∗∗∗ −0.203∗ −0.597∗∗∗ −0.310∗∗ −0.674∗∗∗

(0.111) (0.004) (0.115) (0.111) (0.131) (0.075)
log(EMP )2 0.029∗∗∗ 0.029∗∗∗ 0.015∗∗ 0.032∗∗∗ 0.002 0.035∗∗∗

(0.007) (0.000) (0.007) (0.007) (0.011) (0.005)
AGE −0.004 0.058∗∗∗ −0.004 0.006 0.011 0.044∗∗∗

(0.009) (0.000) (0.009) (0.009) (0.010) (0.006)
AGE2 0.000∗ −0.001∗∗∗ 0.000∗ 0.000 0.000∗∗ −0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
SOLE 0.389∗∗∗ 0.053∗∗∗ 0.400∗∗∗ 0.416∗∗∗ 0.416∗∗∗ 0.118∗∗∗

(0.047) (0.002) (0.048) (0.048) (0.050) (0.035)
CONSTANT 1.944∗∗∗ 3.466∗∗∗ 3.347∗∗∗ 3.532∗∗∗ 3.748∗∗∗ 3.307∗∗∗

(0.425) (0.018) (0.437) (0.428) (0.501) (0.298)

Second Part/ One Part

MRATE 1.665∗∗∗ 1.372∗∗∗ 0.514∗∗∗ 1.372∗∗∗ 0.936∗∗∗ 1.779∗∗∗ 0.942∗∗∗ 1.220∗∗∗

(0.089) (0.169) (0.003) (0.002) (0.079) (0.085) (0.082) (0.068)
MRATE2 −0.332∗∗∗ −0.290∗∗∗ −0.178∗∗∗ −0.290∗∗∗ −0.226∗∗∗ −0.312∗∗∗ −0.238∗∗∗ −0.288∗∗∗

(0.021) (0.041) (0.001) (0.001) (0.019) (0.022) (0.022) (0.018)
log(EMP ) −1.031∗∗∗ −0.602∗∗ −0.629∗∗∗ −0.602∗∗∗ −0.594∗∗∗ −0.597∗∗∗ −0.607∗∗∗ −0.674∗∗∗

(0.112) (0.256) (0.004) (0.004) (0.088) (0.111) (0.088) (0.075)
log(EMP )2 0.054∗∗∗ 0.029∗∗ 0.032∗∗∗ 0.029∗∗∗ 0.032∗∗∗ 0.032∗∗∗ 0.032∗∗∗ 0.035∗∗∗

(0.007) (0.013) (0.000) (0.000) (0.006) (0.007) (0.006) (0.005)
AGE 0.055∗∗∗ 0.058∗∗∗ 0.061∗∗∗ 0.058∗∗∗ 0.048∗∗∗ 0.006 0.050∗∗∗ 0.044∗∗∗

(0.008) (0.008) (0.000) (0.000) (0.006) (0.009) (0.006) (0.006)
AGE2 −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ 0.000 −0.001∗∗∗ −0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
SOLE 0.064 0.053 −0.170∗∗∗ 0.053∗∗∗ −0.120∗∗∗ 0.416∗∗∗ −0.107∗∗∗ 0.118∗∗∗

(0.047) (0.127) (0.002) (0.002) (0.038) (0.048) (0.037) (0.035)
CONSTANT 5.105∗∗∗ 3.466∗∗∗ 3.376∗∗∗ 3.466∗∗∗ 3.040∗∗∗ 3.532∗∗∗ 3.119∗∗∗ 3.307∗∗∗

(0.431) (1.204) (0.019) (0.018) (0.336) (0.428) (0.333) (0.298)

Intra-group correlation

MRATE −0.202∗∗∗ −0.191∗∗∗

(0.037) (0.011)
log(EMP ) −0.236∗∗∗ −0.088∗∗∗

(0.028) (0.009)
AGE 0.014∗∗∗ 0.008∗∗∗

(0.003) (0.002)
CONSTANT 2.648∗∗∗ 1.517∗∗∗ 3.315∗∗∗ 1.440∗∗∗

(0.026) (0.023) (0.124) (0.070)

Tests

LM/LR Test (χ2(8)) 204.46∗∗∗ 2702.33∗∗∗ 489.28∗∗∗

Wald Test (χ2(8) 82322.39∗∗∗ 5020.01∗∗∗ 619.41∗∗∗

ρ 0.352 0.397 0.406 0.410
Observations 4,734 4,734 4,734 4,734 4,734 4,734 4,734 4,734

Notes: Parameter estimates are reported. The results in column (1) are identical to column (4) in Table III in Papke and Wooldridge
(1996). In the logit model the dependent variable is one if all employees participate in the 401(k) pension plan and zero otherwise.
The QMLE of the two-part model is estimated only for PRATE < 1. The LR test refers to columns (5) to (8).
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less than full participation. The variable SOLE that informs whether the 401(k) pension

plan is the only one offered by a firm forms a notable exception. The probability to ob-

serve full-participation is significantly higher in firms that only offer the 401(k) pension

plan throughout but the non-restricted two-part models indicate that for all other firms

a sole offer of the 401(k) pension plan reduces the share of participants.

Columns (5) to (8) in Table 3 highlight the existence of non-negligible intra-group

correlation in the data on 401(k) pension plan participation. The estimated ρ varies

from 0.35 to 0.41 and (as indicated in columns 5 and 8) is also affected by a firm’s

characteristics. An increase in a firm’s matching rate decreases ci and, thus, increases the

intra-group correlation ρ as can be seen from equation (10). This finding is well in line

with our expectations indicating that a larger matching rate increases the intra-group

correlation making 100 percent participation more likely. In a similar vein, a larger firm

size also increases ρ. By contrast, in firms that offer older pension plans the intra-group

correlation is reduced.

At the bottom of Table 3 we report the results from the alternative LM, LR and

Wald tests. All of them indicate that the one-part model should be rejected in favour of

the two-part fractional response model. Given the discussion on the parameter estimates

for the SOLE dummy variable, this result is not very surprising. This, together with

the discussion on the intra-group correlation from above suggests that the generalized

beta-binomial model might be most accurate for estimating the 401(k) plan participation

rates data at hand.

Finally, for a quantitative comparison of the impacts of all covariates across the differ-

ent econometric models, one has to focus on marginal effects. Here, we again follow Papke

and Wooldridge (1996) and plot the predicted participation rates for different matching

rates. Thereby, we set firm size and the pension plans age at their median values of 628

employees and 8 years, respectively, and assume that no other pension plan is offered

(i.e., SOLE=0). Finally, we vary the matching rate from 0 (i.e., no matching offered at

all) to 1, (i.e., 100 percent matching). Figure 1 displays the predicted participation rates

for the QMLE proposed by Papke and Wooldridge (1996) and both alternative two-part

models. The left panel compares the predictions from the QMLE (column 1 of Table

3) with the ones from the two-part binomial alternative (column 3). In the right panel

the alternative predictions are based on the parameters from the two-part beta-binomial

model that parametrizes the intra-group correlation with MRATE, log(EMP) and AGE

(column 7). The 95 percent confidence intervals are constructed using the delta method.

Figure 1 reveals some interesting results: First of all, in the absence of any matching

(i.e., MRATE=0) the predicted conditional mean of PRATE is lowest (highest) for the

QMLE (two-part binomial model). This difference is statistically significant as indicated

13



Figure 1: Participation rate versus matching rate: Model predictions

by the respective confidence intervals. Second, as can be seen from the slopes of the

corresponding curves, the predicted marginal effect of MRATE, by contrast, is lowest

for the generalized binomial model. Most interestingly, however, the QMLE and the

(ML based) two-part beta-binomial model deliver relatively similar predictions. This

is indicated by the overlap of the respective 95 percent confidence intervals over the

whole range of matching rates considers. This finding highlights the usefulness of the

QMLE estimator, but also points to relevance of the (two-part) beta-binomial model as

a valuable alternative. The QMLE is very easy to implement, but the two-part beta-

binomial estimator allows to explicitly specify intra-group correlation, thus, providing

additional (parametric) insights in the data generating process.

5 Conclusions

In many applications of fractional responses models the number of units per group is

observed and, consequently, the fractional response variable is based on a fraction of

integers. In such a situation one can use this additional information and specify two-

part models that nest the one-part fractional response model proposed by Papke and
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Wooldridge (1996) and account for intra-group correlation and overdispersion induced by

group-specific random effects.

These nested two-part models also have the advantage that they allow to apply simple

LM, LR and Wald tests to discriminate between one-part and two-part fractional response

models. Based on the proposed two-part models, this paper also derives explicit formulas

for the Wald and the LM tests. Two Monte Carlo simulation exercises reveal that these

tests are properly sized and equipped with sufficient power in the generalized binomial

and the beta-binomial fractional response framework. Finally, we apply our alternative

estimators to a sample of 401(k) pension plan participation rates and are able to show

that these data are characterized by non-negligible intra-group correlation.
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A LM and Wald Tests for the Binomial Two-Part

Model

A.1 Derivation of the LM Test

To derive the LM test we reparametrize the model and set γ = β+δ. Then, the likelihood

function is given by∑N
i=1 ln(f(β; yi, xi))

= (1− zi)
[

ln(1−G(xi (β + δ))ni) + ni(yi lnG(xiβ) + (1− yi) ln(1−G(xiβ)))

− ln(1−G(xiβ)ni) + const
]

+ zi.
[
ni ln(G(xi (β + δ)))

]
.

To derive the score define zi = 0 if yi < 0 and zi = 1 if yi = 1 and denote G′i = gi. To

simplify the notation, we first assume that the model only contains a constant (xi = 1)

and introduce the vector of explanatory variables below. The score is given by

∂ ln(l(δ, β))

∂δ
= (1− zi)

−niG(β + δ)ni−1g(β + δ)

1−G(β + δ)ni
+ zi

nig(β + δ)

G(β + δ)

∂ ln(l(δ, β))

∂β
= (1− zi)

−niG(β + δ)ni−1g(β + δ)

1−G(β + δ)ni

+(1− zi)ni
(
g(β)yi
G(β)

− g(β)(1− yi)
1−G(β)

)
+(1− zi)

niG(β)ni−1g(β)

1−G(β)ni

+zi
nig(β + δ)

G(β + δ).

Now define Ciδ = ni
1−G(δ)

1−G(δ)ni
, Ciβ+δ = ni

1−G(β+δ)
1−G(β+δ)ni

and observe that Gi = eβ

1+eβ
and

gi =
eβ(1+eβ)−eβeβ

(1+eβ)
2 = eβ

1+eβ
1

1+eβ
= Gi(1−Gi). Inserting and simplifying yields

siδ =
∂ ln(l(δ, β))

∂δ
= Ciβ+δ (zi −G(β + δ)ni)

siβ =
∂ ln(l(δ, β))

∂β
= ni (yi −G(β)) + (1− zi) [G(β + δ)niCiβ+δ −G(β)niCiβ] ,
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where we use yi = 1 if zi = 1. The Hessian thus can be derived as

∂2 ln(l(δ, β))

∂δ2
=

∂Ciβ+δ

∂δ
(zi −G(β + δ)ni)− C2

iβ+δ (1−G(β + δ)ni)G(β + δ)ni

∂ ln(l(δ, β))

∂δ∂β
=

∂Ciβ+δ

∂β
(zi −G(β + δ)ni)− C2

iβ+δ (1−G(β + δ)ni)G(β + δ)ni

∂2 ln(l(δ, β))

∂β2
= −ni ((1−G(β))G(β)) +

∂(1− zi) [G(β + δ)niCiβ+δ −G(β)niCiβ]

∂β
,

so that under H0 : δ = 0 on obtains

E[Hi]|δ=0 = −

[
C2
iβ (1−G(β)ni)G(β)ni C2

iβ (1−G(β)ni)G(β)ni

C2
iβ (1−G(β)ni)G(β)ni ni ((1−G(β))G(β))

]

: = −

[
Ai Ai

Ai Bi

]
.

Now, introducing a (1× k) vector of explanatory variables xi for unit i under H0 : δ = 0

yields

siδ = Ciβ (zi −G(xiβ)ni)x′i

siβ = ni (yi −G(xiβ))x′i = 0.

We define

sδ =
N∑
i=1

siδ

sβ =
N∑
i=1

siβ

A(β) =
N∑
i=1

C2
iβG(xiβ)ni (1−G(xiβ)ni)x′ixi

B(β) =
N∑
i=1

[ni (G(xiβ)(1−G(xiβ)))x′ixi] ,

I(β) =

[
A A

A B

]
and I(β)−1 =

[
A−1

(
I + A (B − A)−1)AA−1 − (B − A)−1

− (B − A)−1 (B − A)−1

]
.

Note A−1
(
A+ A (B − A)−1A

)
A−1 = A−1

(
I + A (B − A)−1) = A−1 + (B − A)−1. The

estimated LM statistic uses the estimated parameters from the one-part model with index
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OP and is given by

L̂M =
[
ŝ′δOP 0

] A(β̂OP )−1+
(
B(β̂OP )− A(β̂OP )

)−1

−
(
B(β̂OP )− A(β̂OP )

)−1

−
(
B(β̂OP )− A(β̂OP )

)−1 (
B(β̂OP )− A(β̂OP )

)−1

[ ŝδOP
0

]

= ŝ′δOP

(
A(β̂OP )−1 +

(
B(β̂OP )−1 − A(β̂OP )

)−1
)
ŝδOP ,

which is asymptotically distributed as χ2(k).

A.2 Derivation of the Wald Test

For the Wald test consider the model in original parametrization so that the following

restriction is tested [
Ik −Ik

] [ γ

β

]
= γ − β = 0.

The expected Hessian of the unrestricted model can be derived similarly as above, and

for observation i reads as

E[Hi] = −

[
C2
iγ (1−G(xiγ)ni)G(xiγ)ni 0

0 ni ((1−G(xiβ))G(xiβ))− C2
iβ (1−G(xiβ)ni)G(xiβ)ni

]
.

The Wald test uses the estimated parameters of the two-part model that are indexed by

TP. Denoting the estimated variance covariance matrix of ˆγTP by V̂γTP and that of ˆβTP

by V̂βTP it can easily be shown that

V̂γTP + V̂βTP = A(γ̂TP )−1 +
(
B(β̂TP )− A(β̂TP )

)−1

,

and

Ŵ = (γ̂TP − β̂TP )′
(
A(γ̂TP )−1 +

(
B(β̂TP )− A(β̂TP )

)−1
)−1

(γ̂TP − β̂TP ).

Asymptotically, this Wald test is also χ2(k) distributed.
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B The Beta-Binomial Two-Part Fractional Response

Model

In the two-part model the probability for ki = yini ≤ ni successes in ni trials can be

rewritten as

g(yi|xi, ni) =

{
P1(ni, xi) if yi = 1

(1− P1(ni, xi))
P2(ki,xi)

1−P2(ni,xi)
if yi < 1.

Defining ∆ ln Γ (y, a) = ln Γ (y + a)− ln Γ (a), one can write

lnP2(ki) = ln

(
ni
ki

)
+ ∆ ln Γ (ki, ai) + ∆ ln Γ (ni − ki, bi)−∆ ln Γ (ni, ai + bi)

ln

(
ni
ki

)
+ ∆ ln Γ (ki, cθi2) + ∆ ln Γ (ni − ki, c (1− θi2))−∆ ln Γ (ni, c) .

P1(n, xi) is defined analogously:

P1(ni) =
Γ (ni + ai1)

Γ (ni + ai1 + bi1)

Γ (ai1 + bi1)

Γ (ai1)
=

ni−1∏
j=0

(ai1 + j)

ni−1∏
j=0

(ai1 + bi1 + j)

=

ni−1∏
j=0

(cθi1 + j)

ni−1∏
j=0

(c+ j)

lnP1(ni) =

ni−1∑
j=0

ln(cθi1 + j)−
ni−1∑
j=0

ln(c+ j).

Similarly,

lnP2(ni) =

ni−1∑
j=0

ln(cθi2 + j)−
ni−1∑
j=0

ln(c+ j).

In order to drive the likelihood of the model, we define zi = 1[ki = ni] = 1[yi = 1]. Then

the contribution of each group i to the likelihood is

lnLi = (1− zi)
[

ln(1− P1(θi1, c, ni)) + lnP2(θi2, c, ki)

− ln(1− P2(θi2, c, ni)) + const
]

+ zi
[

ln(P1(θi1, c, ni))
]

:= Li1 + Li2

with

Li1 = (1− zi) ln(1− P1(θi1, c, ni)) + zi ln(P1(θi1, c, ni))

Li2 = −(1− zi) ln(1− P2(θi2, c, ni)) + (1− zi) lnP2(θi2, c, ki)).
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Note under H0 : P1(θi1, c, ni) = P2(θi2, c, ni) the contribution of each group i to the

likelihood reduces to

lnL1
i = (1− zi) ln(1− P2(θi2, c)) + zi ln(P2(θi2, c)).

We assume θi2 = G(xiβ), while θi1 = G(xi (β + δ) . In order to derive the score one needs

the first derivatives of lnP1(θi1, c, ni), lnP2(θi2, c, ni) and lnP2(θi2, c, ki). Using

∂
∂ ln p

ln(1− eln p) = − eln p

1−eln p = − p
1−p

∂
∂ ln p

z−eln p
1−eln p =

−eln p(1−eln p)+(z−eln p)eln p

(1−eln p)
2 = eln p−(1−eln p)+(z−eln p)

(1−eln p)
2

= eln p−1+eln p+z−eln p

(1−eln p)
2 = z−1

(1−eln p)
2 e

ln p = (z−1)p

(1−p)2 ,

one can write

∂ lnLi
∂δ

=
[
(1− zi) −P1(θi1(β,δ),c,ni)

1−P1(θi1(β,δ),c,ni)
+ zi

]
∂ lnP1(θi1(β,δ),c,ni)

∂θi1

∂θi1(β,δ)
∂δ

=
[
−(1−zi)P1(θi1(δ),c,ni)+zi(1−P1(θi1(δ),c,ni))

1−P1(θi1(δ),c,ni)

]
∂ lnP1(θi1(β,δ),c,ni)

∂θi1

∂θi1(β,δ)
∂δ

=
[
zi−P1(θi1(β,δ),c,ni))
1−P1(θi1(β,δ),c,ni)

]
∂ lnP1(θi1(β,δ),c,ni)

∂θi1

∂θi1(β,δ)
∂δ

∂ lnLi
∂β

=
[
zi−P1(θi1(β,δ),c,ni))
1−P1(θi1(β,δ),c,ni)

]
∂ lnP1(θi1(β,δ),c,ni)

∂θi1

∂θi1(β,δ)
∂β

−
[
zi−P2(θi2(β),c,ni))
1−P2(θi2(β),c,ni)

]
∂ lnP2(θi2(β),c,ni)

∂θi2

∂θi2(β)
∂β

+
(

(1− zi)∂ lnP2(θi2(β),c,ki)
∂θi2

+ zi
∂ lnP2(θi2(β),c,ni)

∂θi2

)
∂θi2(β)
∂β

∂ lnLi
∂c

=
[
zi−P1(θi1(β,δ),c,ni))
1−P1(θi1(β,δ),c,ni)

]
∂ lnP1(θi1(β,δ),c,ni)

∂c

+
[
zi−P2(θi2(β),c,ni))
1−P2(θi2(β),c,ni)

]
∂ lnP2(θi2(β),c,ni)

∂c

+(1− zi)∂ lnP2(θi2(β),c,ki)
∂c

+ zi
∂ lnP2(θi2(β),c,ni)

∂c

and

P1(ni) = ∆ ln Γ (ni, cqi)−∆ ln Γ (ni, c)

P2(ni) = ∆ ln Γ (ni, cpi)−∆ ln Γ (ni, c) ,

where ∆ ln Γ (y, a) = ln Γ (y + a) − ln Γ (a) . ∂∆ ln Γ(y,a)
∂a

= ψ (y + a) − ψ (a) = ∆ψ(y, a),

ψ(x) = ∂ ln Γ(x)
∂x

denotes di-gamma function.
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∂ lnP1(θi1(β,δ),c,ni)
∂θi1

= ∂(∆ ln Γ(ni,cqi(β,δ))−∆ ln Γ(ni,c))
∂θi1

= ∆ψ(ni, cθi1(β, δ))c

∂ lnP2(θi2(β),c,ni)
∂θi2

= ∆ψ(ni, cθi2(β))c

∂ lnP2(θi2(β),c,ki)
∂θi2

= ∆ψ(ki, cθi2(β))c

∂ lnP1(θi1(β,δ),c,ni)
∂c

= ∆ψ(ni, cθi1(β, δ))θi1(β, δ)−∆ψ(ni, c)

∂ lnP2(θi2(β),c,ni)
∂c

= ∆ψ(ni, cθi2(β))θi2(β)−∆ψ(ni, c)

∂ lnP2(θi2(β),c,ki)
∂c

= ∆ψ(ki, cθi2(β))θi2(β)−∆ψ(ki, c).

Defining

u(θi1(β, δ), c, ni) = zi−P1(θi1(β,δ),c,ni)
1−P1(θi1(β,δ),c,ni)

∂
∂ lnP1

u(θi1(β, δ), c, ni) = v(θi1(β, δ), c, ni) = (zi−1)P1(θi1(β,δ),c,ni)

(1−P1(θi1(β,δ),c,ni))
2 ,

the derivation of the score can be based on

∂ lnL1
i

∂δk
= u(θi1(β, δ), c, ni)∆ψ(ni, cqi)c

∂θi1
∂δk

= 0

∂ lnL2
i

∂βk
= u(θi1(β, δ), c, ni)∆ψ(ni, cqi)c

∂θi1
∂βk

= 0

∂ lnL2
i

∂βk
= u(θi1(β, δ), ci, ni)∆ψ(ni, cqi)c

∂θi1
∂βk

−u(θi1(β, δ), ci, ni)∆ψ(ni, cpi)c
∂θi2
∂βk

+(1− zi)∆ψ(ki, cpi)c
∂θi2
∂βk

+ zi∆ψ(ni, cpi)c
∂θi2
∂βk

∂ lnLi
∂c

= u(θi1(β, δ), ci, ni) (∆ψ(ni, cqi)θi1 −∆ψ(ni, c))

−u(θi2, ci, ni) (∆ψ(ni, cpi)θi2 −∆ψ(ni, c))

+ (∆ψ(ki, cpi)θi2 −∆ψ(ki, c)) .

To implement the likelihood estimator, we provide the score but rely on the numerical

derivation of the Hessian. Then, Wald and LR tests are readily available from standard

ML estimation routines.
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