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Abstract 
In 2005 the EU lowered the guaranteed minimum prices for crops in its Common Agricul-
tural Policy and stopped market interventions. Consequently, prices started to fluctuate 
more intensively, and farmers' incomes are now subject to higher price volatility. A crop 
price insurance scheme could provide an interesting instrument to stabilise the income 
of European farmers. We analyse the premium level and capital requirement of a hypo-
thetical insurance contract covering several combinations of minimum prices for a bun-
dle of wheat, maize, and rape seed. The premium level is based on the Black option 
pricing model and a Bayesian autoregressive stochastic volatility model. Monte Carlo 
simulated forecasts provide estimates for expected variances and a profit-loss distribu-
tion for various combinations of minimum prices. The required solvency capital to keep 
the insurance business afloat at the 1 percent ruin probability creates capital costs ex-
ceeding the expected profit. 
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Executive Summary 
 

We present a novel instrument for addressing price risk in agricultural commodity markets. Many 

farmers are financially harmed when product prices are too low to cover variable costs of pro-

duction and therefore, they are interested in guaranteed minimum prices. In Austria 78 percent 

of farmers who were asked about their attitudes towards price risk showed an interest in an 

insurance scheme or a similar instrument to prevent such damage. We analyse a financial in-

strument that guarantees a minimum price for the crops wheat, maize, and rape seed on Eu-

ropean markets.  

The details of the insurance product are that a minimum price is selected at the end of January, 

the contract duration for wheat and maize is nine months, and for rape seed it is six months in 

the same year. After this period claims are paid if the minimum price selected in January is 

above the spot price prevailing at contract maturity. The claims payment corresponds to the 

difference between the insured minimum price and the observed spot price.  

We use Bayesian linear normal stochastic variance (SV) models with stochastic autoregressive 

volatility to compute time varying volatilities for insurance premiums based on commodity op-

tion pricing model. We use these models also to simulate spot prices at the maturity date of 

insurance contracts for the crops of interest. For the estimation, we approximate daily spot 

prices by prices of futures contracts close to their expiration date from Euronext (nearby). Using 

Monte-Carlo methods we compute the probabilities of how often the insured minimum prices 

of a contract would be undercut and the associated expected loss.  

For a hypothetical bundle of crops, that represents the Austrian harvest in 2019, we compute 

the profit and loss distribution for various sets of potential minimum prices (e. g. 130 €/t for milling 

wheat, 110 €/t for maize, 240 €/t for rape seed). The profit and loss distribution shows that, given 

the price set mentioned before, a solvency capital of 267 € per bundle is necessary to keep 

the insurance business afloat at the 100-year ruin probability. Under the prevailing market con-

ditions in the Austrian insurance market this would create costs of capital of 25.4 € per bundle. 

The estimated market volume of this minimum price insurance product – based on the net 

premium (net of taxes, costs of capital, administration, and distribution costs) – is € 9.5 mn for 

Austria.
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1. Introduction 

The Common Agricultural Policy (CAP) of the European Union introduced administrative prices 

for major agricultural commodities prior to abolishing custom duties between Member States 

from 1 July 1967 (EEC, 1965). The administrative price is a guaranteed minimum price for a crop 

or livestock product. Administrative prices were lowered in 1992, and this decline accelerated 

in 2002; since 2005 they are well below the world market price (Sinabell, 2020). In the same 

year, the EU introduced a minimum blending requirement of biofuel to conventional fossil car-

bon-based fuels. Because other major producers like the USA introduced similar regulations at 

the same time, an immediate increase of spot prices for wheat, maize, and rape seed oc-

curred. This induced an expansion of supply in response to higher profitability. Throughout the 

following years, agricultural commodity prices began to fluctuate more widely, and conse-

quently the operating income of EU farmers is now more exposed to price variation.  

US farmers, on the other hand, have been exposed to higher price volatility since the early 

1970s. The US financial markets offer several commodity derivatives that allow US farmers to fix 

prices in advance, or to secure a price floor by buying put options. Both financial instruments 

allow fixing ex-ante a minimum revenue from selling the harvest. In addition, the US government 

introduced margin insurance schemes for several commodities in the 2014 Farm Bill (Cordier, 

2014). Although, agricultural futures and options are also available on Euronext, most EU farm-

ers operate small-scale family farms and do not use financial derivatives. 

Given the restrained usage of financial market instruments by EU farmers, the pressure to abol-

ish administrative prices for agricultural products (due to the wish of inclusion in international 

trade agreements), and higher fluctuations of agricultural prices since 2005, insurance-based 

instruments are an attractive means of protecting farmers from price volatility. Meuwissen et al. 

(2018) provide a recent survey. Insurance-based instruments offer a minimum price level in ex-

change for a premium payment by the farmer. The main goal of an insurance scheme is to 

provide short-term assistance when prices are falling rapidly. They are not designed to protect 

farm income against permanent reductions in the price level, because premium levels would 

have to be adjusted accordingly if the price of a crop remains low. Consequently, such a sys-

tem reduces the risk of low returns to producers, increases the expected price and hence also 

the level of output. 

Based on the demand for price insurance surveyed among Austrian farmers (keyQUEST, 2019), 

we consider an insurance contract that offers a minimum price for wheat and maize on the 

first trading day in November, and a contract offering a minimum price for rape seed on the 

first trading day in August. This insurance contract must be signed not later than on the last 

working day of January the same year. Therefore, the contract duration for wheat and maize 

is nine months, and for rape seed it is six months. The conditional claims payment is the differ-

ence between the insured minimum price and the spot price, should the spot price be below 

the agreed minimum price. A spot price at or above the minimum price results in a zero claim. 

This set-up corresponds to a European put option, but contrary to an option, the insurance 
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contract is non-tradeable. It lacks a safety system provided by margin calls, and a settlement 

system provided by a clearing house.  

Alternatively, we compute the amount of solvency capital necessary to run this insurance 

scheme at various safety levels for a representative insurance contract. The representative 

contract covers 11 metric tons of wheat, 18 metric tons of maize and 1 metric ton of rape seed. 

The 11-18-1 relation matches the composition of the Austrian harvest of 2019 (Statistik Austria, 

2020). The shares roughly scale up to the total harvest if multiplied by 119,000. 

While government minimum price guarantees are a widely-used instrument of agricultural pol-

icy, price insurance contracts for agricultural crops are rarely applied, presumably because 

financial markets offer instruments for hedging. Price insurance contracts, however, can offer 

some advantages over options and futures. The minimum price can be set close to the mar-

ginal costs of production, while financial market-based instruments usually offer strike prices 

close to the current spot price. For example, the spot price for wheat on the 12th of February 

2020 on the Euronext exchange was 186 €, while strike prices of the traded options ranged 

between 181 € and 191 € depending on duration. This indicates that an insurance contract 

offering a minimum wheat price as low as, say, 130 € protects against extremely bad outcomes, 

e. g. if the spot price falls below marginal costs. An insurance contract can do so at low premi-

ums, without incurring the cost of permanent spot market tracking and hedging. 

Bardsley – Cashin (1990) first described the similarity between the value of a public minimum 

price guarantee and the price of a put option on the example of the Australian government’s 

minimum price guarantees for the 1979/1980 through 1988/1989 growing seasons. We broadly 

follow Bardsley – Cashin (1990) and compute the price for the proposed insurance contracts 

by using the formula for a European put options for commodities (Black, 1976), adjusted for the 

time variable volatility of crop prices (Myers – Hanson, 1993). The main difference is that the 

above papers estimate a conventional GARCH model of returns, whereas we estimate a sto-

chastic volatility model (SV) using Bayesian techniques. For the estimation we approximate spot 

prices by nearby futures prices for wheat, maize and rape seed on Euronext. The SV model 

allows us to forecast the distribution of log returns on a commodity over a horizon of nine 

months for wheat and maize and six months for rape seed. Forecasting the distribution of log 

returns allows us to forecast the distribution of future prices. In addition, the model is used to 

forecast the distribution of the daily standard deviation of a price at the nine- and six-months 

horizons. We use this estimate to compute the option value at the end of January, i. e. the 

insurance premium for a bundle of minimum prices. It is assumed that the premia yield a risk-

free return over the duration of the contract. Combining the present value of the premia at 

maturity with the distribution of future prices allows us to compute the shortfall distribution, i. e. 

the probabilities of claims payouts and their amounts. The difference between premium intakes 

and claims payments corresponds to the expected loss/profit of the insured bundle or if one is 

willing to define a specific solvency level, the estimates for the minimum solvency capital 

needed for underwriting price insurance contracts. 
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The next section provides an overview of price developments at the spot and future markets 

for wheat, maize and rape seed. We continue with a description of the premium calculation 

followed by a description of the SV models used for the forecasting of commodity prices and 

the volatility of returns. We present the solvency capital requirement for different ruin probabil-

ities and close with conclusions.
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2. Data 

Prices for agricultural commodities in the EU have been administrated since 1968, with a low-

ering of administrated prices after 1992 and a distinct reduction below world market levels 

since the year 2005. It is remarkable that prices for wheat, maize, and rape seed are recorded 

at monthly frequencies only, i. e. there is no daily market spot price for these crops available, 

although official statistics for agricultural products tend to be very detailed. The low frequency 

of price data reflects no need for daily price information on the side of farmers as well as offi-

cials. In Figure 2.1 we show, as an example, the development of wheat, maize, and rape seed 

producer prices in Austria, a country not participating in the Common Agricultural Policy of the 

EU until the end of 1994. Before 1994, the producer prices for wheat at times have been stable 

for several years. Since 1993, gaps emerge in the time series for wheat prices, for months when 

no price at all has been recorded; such gaps are in the months before harvest. The producer 

price for maize shows a distinct seasonal variation even after 1995, but after 2005 this pattern 

disappears completely, giving way for a more volatile fluctuation. On the other hand, producer 

prices for rape seed appear to have been always subject to high volatility in Austria. After a 

doubling of prices between 1974 and 1982, they dropped towards their starting level from 1973. 

Again, after 2005 prices fluctuated widely between 175 € and 470 €. 

Figure 2.1 illustrates that farmers are subject to pronounced price swings. Although farmers in 

the survey conducted by keyQUEST (2019) show a surprisingly high degree of risk tolerance, 

there is a group of farmers willing to buy insurance and possibly those with a large investment 

program (compared to their current level of revenues) will get easier access to bank credit if 

they can buy a price insurance. 

The Black (1976) option pricing model needs daily futures prices for the computation of the 

option price. The prices at which Austrian farmers sell their harvest are, however, the monthly 

prices given in Figure 2.1. Therefore, it is important that fluctuations of daily future prices on the 

MATIF exchange reflect the development of monthly prices for wheat, maize and rape seed 

in Austria. Figures 2.2 through Figures 2.4 compare daily prices of futures close nearby their ma-

turity date (nearby) with prices at the maturity date (end) and monthly producer prices in Aus-

tria for each crop. We conclude that after joining the European Union in 1995 crop prices in 

Austria moved in tandem with their counterparts at the MATIF exchange in Paris. 

The pricing formula of commodity options by Black (1976) deviates slightly from the conven-

tional Black – Scholes (1973) model. The reason is that the changes in the log of nearby futures 

prices (log returns) do not follow a log-normal distribution, rather they feature seasonal patterns 

caused by planting and harvest cycles, and they tend to be mean-reverting because higher 

crop prices provide an incentive to expand cultivation. Furthermore, the costs of storage for 

agricultural commodities are high compared to corporate stocks which reduces the profitabil-

ity of arbitrage trading. Figure 2.5 shows the substantial seasonality of crop prices based on 

nearby futures prices. For example, wheat prices tend to be about 7-9 percent above the an-

nual mean during November and December, while maize prices are 3.5 percent below their 
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annual mean in the mid of February and in July 3.5 percent above their annual mean. Table 2.1 

show the characteristics of log returns from nearby futures prices. Tests do not reject the zero 

mean assumptions for log returns of all crops. On the other hand, the presence of frequent 

outliers leads to a rejection of the normality assumption for log returns. Moreover, Figure 2.6 

shows the standard deviation of monthly log returns for US-commodity prices (wheat and 

maize) back to 1963 measured by a rolling window with a length of 36 months. There are clearly 

signs of elevated volatility during the oil crisis 1973 through 1975 and during the financial market 

crisis after 2007. This suggests a degree of heteroscedasticity in the data. The descriptive anal-

ysis of prices and log returns suggest using the modified version of the Black (1976) option for-

mula suggested by Myers – Hanson (1993), Fofana – Brorsen (2001) or Koekebakker – Lien 

(2004). 

Table 2.1: Summary statistics of daily log returns for nearby futures prices, 2000 to 2019 

 
S: MATIF, own computations. P-Value for t-test on zero mean for daily log returns and p-value for Shapiro-Wilk test of 
normality for daily log returns.  

Figure 2.1: Monthly producer prices of premium wheat, maize and rape seed in Austria, 1973 
to 2019 

 
S: Statistik Austria. 

Wheat Maize Rape seed

Minimum -0.240 -0.356 -0.166

Median 0.000 0.000 0.000

Maximum 0.164 0.122 0.100

Mean 0.000 0.000 0.000

Standard dev iation 0.015 0.014 0.012

Skewness -0.941 -4.566 -1.363

t-test 0.617 0.723 0.383

Shapiro-Wilk test 0.000 0.000 0.000
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Figure 2.2: Monthly producer price for wheat in Austria and Euronext (MATIF) futures prices 

 
S: MATIF, Statistik Austria.  

 

Figure 2.3: Monthly producer prices for maize in Austria and Euronext (MATIF) futures prices 

 

S: MATIF, Statistik Austria.  
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Figure 2.4: Monthly producer price for rape seed in Austria and Euronext (MATIF) futures prices 

 

S: MATIF, Statistik Austria.  

 

Figure 2.5: Average daily deviation from annual mean (nearby futures price), 2000 to 2019 

 

S: MATIF, WIFO computations.  
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Figure 2.6: Time varying standard deviation of log returns for US-commodity prices (36 months 
rolling window)  

 

S: World Bank Pinksheet. WIFO computations. 
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3. Premium calculation for the minimum price insurance 

The application of option pricing models for the evaluation of guaranteed minimum prices has 

already been used by Bardsley – Cashin (1990). We transfer this concept to the case of a min-

imum price insurance contract for wheat, maize, and rape seed. The Black – Scholes (1973) 

option pricing formula gives the equilibrium price of a European put option (𝑃௧) at a given time 

𝑡 as a function of its strike price (𝐾), the current spot price of the underlying asset (𝑆௧), the one-

period variance of the proportional price changes in the underlying asset (𝜎ଶ), the risk-free 

interest rate (𝑟), and the time to maturity (𝑇 − 𝑡): 

 𝑃௧ = 𝑆௧(Φ(𝐼ଵ) − 1) − 𝐾𝑒ି(்ି௧)(Φ(𝐼ଶ) − 1), 

with 

 𝐼ଵ = 𝑙𝑜𝑔 ቀ
ௌ

షೝ(ష)ቁ
ଵ

ఙඥ(்ି௧)
+ 0.5𝜎ଶඥ(𝑇 − 𝑡), 

 𝐼ଶ = 𝐼ଵ − 𝜎ඥ(𝑇 − 𝑡), 

where Φ(∙) denotes the cumulative normal distribution function. The price changes are defined 

as the log returns on the underlying asset log(𝑆௧) − log (𝑆௧ିଵ). The option pricing formula can be 

motivated by permanent arbitrage trading between a risk-free asset with rate of return 𝑟 and 

the return on a portfolio including the option and its underlying asset. By continuously adjusting 

the portfolio structure, its return can be made riskless and consequently the equilibrium portfolio 

return must be equal to the risk-free rate of return. 

Because the log returns of commodity prices do not fulfil the normality assumption used in the 

Black – Scholes model, Black (1976) suggested to replace the current spot price (𝑆௧) in the for-

mula above by the futures price of the underlying asset at the maturity date 𝑇 of the option (𝐹்). 

This modification removes problems related to the seasonality of commodity prices, mean-re-

version, and storage costs, because these aspects are reflected in the futures price. Addition-

ally, Myers – Hanson (1993) argue that the standard deviation of commodity prices log returns 

is time variable (cf. Figure 2.6) and that conventional estimates of the variance, based on a 

moving window of 30 days of historic log returns (Jarrow – Rudd, 1983), do not adequately re-

flect the expected variance at maturity in 𝑇. Myers – Hanson (1993) use the expected standard 

deviation for date 𝑇, computed from Monte Carlo simulated forecasts of a GARCH(1,1) model 

to compute option prices, and conclude that – compared to models based on historic volatil-

ities – this procedure provides significantly better estimates for observed market prices of soy 

bean options traded on the Chicago Board of Exchange. Fofana – Brorsen (2001) provide fur-

ther evidence that for maturities between 21 and 50 days, a GARCH based option pricing 

model is not dominated by option pricing models based on the implied volatility. 

We apply a Bayesian normal linear stochastic volatility (SV) model with autoregressive stochas-

tic volatility (Kastner, 2016) to demeaned log returns of nearby futures prices 𝑦௧ = log(𝐹௧) −

log (𝐹௧ିଵ). The stochastic volatility model assumes that each observation 𝑦௧ has its own contem-

poraneous variance 𝑒𝑥𝑝(ℎ௧) and consequently allows for heteroscedasticity. By assuming that 

the log of the variance follows an autoregressive process of order one, the fluctuation of the 
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variance over time is restricted and the model is made estimable. Stochastic volatility models 

are fundamentally different from GARCH models because the variance follows a stochastic 

evolution rather than a deterministic process (Kastner, 2016). 

The model for zero-mean log returns of commodity prices with autoregressive volatility of order 

one is: 

 𝑦௧~𝑁(0, 𝑒), 

 ℎ௧|ℎ௧ିଵ, 𝜇, 𝜙, 𝜎ఎ~𝑁൫𝜇 + 𝜙(ℎ௧ିଵ − 𝜇), 𝜎ఎ
ଶ൯, 

 ℎ|𝜇, 𝜙, 𝜎ఎ~𝑁 ൬𝜇,
𝜎ఎ

ଶ

(1 − 𝜙ଶ)
൘ ൰, 

where 𝑁൫𝜇, 𝜎ఎ
ଶ൯ denotes the normal distribution with mean 𝜇 and variance 𝜎ఎ

ଶ, and ℎ௧ represents 

the unobserved time-varying autoregressive process of order one for the volatility of log returns 

(variance process). The assumption of a zero mean for the log returns is well supported by 𝑡-

tests presented in Table 2.1. 

The parameters of this process are the level of the log-variance (𝜇), the persistence of the log-
variance (𝜙), and the volatility of the log-variance (𝜎ఎ). The initial value for the volatility (ℎ) is 

distributed according to the stationary distribution of an autoregressive process of order one. 

In the estimation we use slightly informative priors for the level of the log-variance 𝜇~𝑁(−10,10) 

which corresponds to an unconditional variance of log returns of 𝑙𝑜𝑔(0.0001)~ − 10. The prior 

of the persistence parameter follows a Beta-distribution, such that a stable autoregressive var-

iance process is assured. Kim et al. (1998) suggest the following values for the hyper parameters 

of this distribution: 𝑎=20 and 𝑏=1.5, implying a mean persistence of 0.86 with the variance of 

0.11. Finally, the prior distribution of the volatility of the log-variance is 𝜎ఎ
ଶ~𝒢 ቀ0.5,0.5𝐵ఙആ

ቁ, and we 

choose the value 𝐵ఙആ
= 0.1 suggested by Kastner (2016). We use R-package “stochvol” to esti-

mate this model. 

Table 3.1 presents the estimation results of the Bayesian normal linear SV model with autoregres-

sive stochastic volatility for daily log returns of wheat, maize, and rape seed using daily data 

for nearby futures prices from 1999 through 2019 giving a sample size of roughly 5,150 observa-

tions. The time series for nearby futures prices contains several missing observations. For these 

trading days, we also delete the price information for the other crops from the sample. With 

one exception, the estimation results are close to our a priori values and they indicate substan-

tial persistence in the volatility variance. Only for rape seed we find a value of the persistency 

parameter below 0.8 which lies within the 90 percent confidence interval spanned between 

0.73 and 0.80. The estimates for the volatility variance are substantially above our a priori as-

sumptions. 
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Table 3.1: Estimation results for Bayesian Student-t linear models with stochastic volatility for 
log returns of wheat, maize, and rape seed nearby futures 

 

S: Estimation based on Bayesian Student-t linear model with AR(1) stochastic volatility using R-package stochvol 
(Kastner, 2015). ESS shows the effective sample size.  

Parameter Mean Standard ESS

deviation 0.05 0.5 0.95

μ -9.66 0.10 -9.82 -9.66 -9.50 3,726

φ 0.87 0.01 0.85 0.87 0.89 246

σ 0.84 0.05 0.77 0.84 0.92 141

exp(μ/2) 0.01 0.00 0.01 0.01 0.01 3,726

σ2 0.71 0.08 0.59 0.70 0.84 141

μ -9.95 0.10 -10.10 -9.95 -9.79 4,175

φ 0.86 0.01 0.84 0.87 0.88 454

σ 0.85 0.04 0.78 0.85 0.91 271

exp(μ/2) 0.01 0.00 0.01 0.01 0.01 4,175

σ2 0.72 0.07 0.61 0.71 0.83 271

μ -9.66 0.05 -9.75 -9.66 -9.58 2,992

φ 0.77 0.02 0.73 0.77 0.80 317

σ 0.69 0.03 0.64 0.69 0.75 289

exp(μ/2) 0.01 0.00 0.01 0.01 0.01 2,992

σ2 0.48 0.05 0.41 0.48 0.56 289

Quantiles

Wheat

Maize

Rape seed
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4. Computation of the premium level 

There is no closed form solution to the GARCH option pricing problem, but GARCH based op-

tion pricing can be implemented using Monte Carlo methods and a simulation model. My-

ers – Hanson (1993) derive a closed form approximation to the simulation model. We follow 

their approach and compute the one-period standard deviation for the Black option pricing 
model from a Monte Carlo simulation of the latent volatility ℎ,௧, where 𝑖 represents one of the 

10,000 simulated volatility forecasts between 𝑡 = 0 and maturity 𝑡 = 𝑇. In view of the conditional 
independence of ℎ,௧ for all 𝑡 and all 𝑖, the variance at maturity 𝑇 is given by ∑ exp (ℎ,௧)௧ୀ்

௧ୀ . We 

plug the square root of the median of the above expression over the 10,000 simulated forecasts 

as the volatility parameter in the Black (1976) option price model and compute option prices 

for several sets of strike prices. Figures 4.1 to 4.3 show our estimates for the latent historic volatility 

series from 1999 through January 2019 and for the forecast period from February 1st 2019 until 𝑇 

for each crop. The models expect an increasing variance for wheat and rape seed, while the 

variance for maize will decline over the lifetime of the option. 

We plug the median volatility at maturity 𝑇 from the 10,000 forecasts into the Black (1976) for-

mula and compute insurance premiums for given sets of minimum prices. We use the minimum 

prices for which a survey among Austrian farmers by keyQUEST (2019) indicates some demand 

for a wheat price insurance among Austrian farmers. For maize and rape seed we rescale the 

minimum prices for wheat accordingly to achieve comparable minimum prices. Table 4.1 

shows the premiums for various minimum (strike) prices per metric ton. The last row in Table 4.1 

shows that the premium level is highest for minimum prices close to the prevailing spot prices 

(𝑆௧)1. In this case, the premium ranges between 5.5 percent (rape seed) and 8.3 percent 

(wheat) of 𝑆௧, i. e. at the date of buying insurance. The reason for high premium levels is the 

higher probability of realised spot price at maturity 𝑇 (𝑆்) below the insured minimum price 𝐾. 

Consequently, lower insured minimum prices require a lower premium level because the prob-

ability of a very low spot price at maturity that would trigger a claims payment (𝐾 > 𝑆்) be-

comes smaller. For minimum prices far below the current spot price 𝑆௧, the premium level falls 

below one euro per metric ton, i. e. in a range between 0.03 (maize) and 0.27 percent (wheat) 

of the spot price at that date of buying insurance (𝑆௧). 

Hull – White (1987) and Johnson – Shanno (1987) point to the fact that stochastic volatility adds 

an additional source of risk to the valuation of options which is not generally diversifiable, and 

the arbitrage argument, on which Black’s (1976) option pricing formula is build, breaks down. 

Myers – Hanson (1993), however, argue that equivalent restrictions can be imposed on the 

preferences and/or the correlation properties of the stochastic process resulting in risk-neutral 

                                                      
1  We do not have access to daily spot prices for wheat, maize, and rape seed and therefore, we approximate spot 
prices by the corresponding daily nearby futures prices from MATIF/Euronext in all our computations. Theoretically and 
in practice, futures prices converge to the spot price as the maturity date approaches. To keep our arguments con-
sistent with our notation of the Black option pricing model, we will refer to nearby futures prices as spot prices in the 
following.  
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valuation. Alternatively, risk-neutral valuation may be an adequate approximation if many risk-

neutral agents are active in the market. Finally, because the risk preferences of all market par-

ticipants are not known, option pricing formulas requiring information on individual preference 

are of limited use. 
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Table 4.1: Level of insurance premium using the Black option price formula for selected 
insured minimum prices 

 

S: Black (1976) option price formula using the median forecasted standard deviation at maturity T based on 10,000 
forecasts of the volatility from a Bayesian normal linear model with AR(1) stochastic volatility using R-package sto-
chvol (Kastner, 2016). Insured period for wheat and maize 9 months, and 6 months for rape seed starting with Febru-
ary 1st 2019 with the following realised nearby futures price for wheat (€ 204.25), maize (€ 177.75), and rape 
seed(€ 372) on January 31st 2019.  

 

Figure 4.1: Historic and forecasted volatility of log returns for wheat nearby future prices, 9 
months horizon 

 

S: MATIF. Standard deviation estimated from 10,000 forecasts of the volatility based on Bayesian normal linear model 
with AR(1) stochastic volatility using R-package stochvol (Kastner, 2016). Low and High provide 5 and 95 percent 
confidence intervals from 10,000 draws.  

Wheat Maize Rape seed Wheat Maize Rape seed

130 110 240 0.55 0.05 0.00

140 120 260 1.28 0.22 0.04

150 130 290 2.59 0.67 0.53

160 140 310 4.69 1.70 1.87

170 150 330 7.73 3.58 5.05

180 160 350 11.78 6.60 11.01

190 170 370 16.87 10.89 20.33

Insured minimum prices € per metric ton Premium lev el € per metric ton
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Figure 4.2: Historic and forecasted volatility of log returns for maize nearby future prices from 
Bayesian normal linear model with autoregressive stochastic volatility, 9 months horizon 

 

S: MATIF. Standard deviation estimated from 10,000 forecasts of the volatility based on Bayesian normal linear model 
with AR(1) stochastic volatility using R-package stochvol (Kastner, 2016). Low and High provide 5 and 95 percent 
confidence intervals from 10,000 draws.  
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Figure 4.3: Historic and forecasted volatility of log returns for rape seed nearby future prices 
from Bayesian normal linear model with autoregressive stochastic volatility, 6 months horizon 

 
S: MATIF. Standard deviation estimated from 10,000 forecasts of the volatility based on Bayesian normal linear model 
with AR(1) stochastic volatility using R-package stochvol (Kastner, 2016). Low and High provide 5 and 95 percent 
confidence intervals from 10,000 draws.  
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5. The potential capital requirement for a minimum price insurance scheme  

Options are traded on derivative markets and buying and selling activities are administrated 

by dedicated clearing houses, who document trades, do the book keeping and organise mar-

gin calls if the option is in or out of the money. Insurance contracts, on the other hand, are not 

traded on an exchange and have no system of margin calls to back them up. Instead insur-

ance companies provide solvency capital in line with a predefined ruin probability. In this sec-

tion we suggest a method to compute the solvency capital necessary for a crop price insur-

ance. 

The Bayesian linear normal SV model with stochastic autoregressive volatility produces also sto-

chastic forecasts of the nearby futures price at maturity (𝐹்). Because 𝐹௧ converges towards 𝑆் 

when 𝑡 → 𝑇 the forecasts for 𝐹் must be close to 𝑆் (Kolb, 1997), cf. also Figures 2.2 to 2.4. Based 

on Monte Carlo simulated forecasts for each crop price, we can compare the distribution of 

historic nearby futures prices 𝐹௧ with the distribution of 10,000 simulated nearby futures prices at 

maturity 𝑇 (𝐹௧) in Table 5.1. If we assume that 𝐹்~𝑆், we can interpret the numbers in Table 5.1 

as forecasts for 𝑆். The median forecast from the Monte Carlo simulation is higher than the 

historic median. This is a direct consequence of the mean zero assumption for log-returns in the 

stochastic volatility model and high starting values at the end of January 2019, cf. the nearby 

prices listed in the note to Table 4.1 and Figures 2.2 through 2.4), respectively. A view on the 

maximum values for simulated nearby futures prices at T shows that the Bayesian linear normal 

model generates substantial outliers lying above the historically observed range. For wheat and 

maize, the minimum values for simulated spot price (𝑆்) are also substantially below their his-

toric counterparts indicating that the model can produce extremely low prices as well. Only 

the simulated minimum values for the nearby futures price of rape seed is substantially above 

the corresponding historic minimum. The other quantiles for low prices also suggest that the 

Monte Carlo simulation produces comparatively optimistic prices for rape seed. 

Let the index 𝑗  indicate the respective crop 𝑗 = (wheat, maize, rape seed), and let an insured 

bundle cover 11 metric tons of wheat, 18 metric tons of maize and 1 metric ton of rape seed 

𝛼 = (11,18,1). This relation reflects the relative quantities of each crop in the Austrian harvest 

from 2019 normalised such that a minimum of one metric ton of rape seed is insured and the 

quantities for wheat and maize are rounded to full metric tons. The profit/loss distribution of an 

insurance contract covering such a bundle results from a comparison of each simulated fore-
cast for the spot price at 𝑇 (𝑆்) with the corresponding insured minimum prices 𝐾 as given in 

the first three columns of Tables 4.1 and 5.2. The insurance for crop 𝑗's price produces a profit 
corresponding to the premium payment 𝑃௧ given in Table 4.1 if 𝐾 < 𝑆், i. e. if the spot price of 

𝑗 in draw 𝑖 at maturity 𝑇 is above the insured minimum price. On the other hand, crop 𝑗’s price 
insurance triggers a claims payout of size 𝐾 − 𝑆் if 𝐾 > 𝑆். Furthermore, if 𝐾 − 𝑆் > 𝑃௧, the 

price insurance for crop 𝑗 will bring a loss for the insurer. Given our 10,000 simulated forecasts of 
the spot prices 𝑆் for each crop we compute the profit/loss (𝑃𝐿) of the insured (11, 18, 1)-

bundle for each draw 𝑖 as: 
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 𝑃𝐿 = 𝑒𝑥𝑝(𝑟𝑇)(∑ 𝛼𝑃௧)ଷ
ୀଵ − ∑ 𝛼𝑚𝑎𝑥 ቀ൫𝐾 − 𝑆்൯, 0ቁଷ

ୀଵ  i=1, 2,…, 10,000. 

Here the first term represents the present value of the premia at maturity. Given 10,000 simula-

tions for the spot price at maturity 𝑇 of each crop, this produces 10,000 expected profit/loss 
numbers for the insured bundle at each set of minimum prices 𝐾 shown in the rows of Table 5.2. 

The lower quantiles of the profit/loss distribution show the ruin probability for the crop price 

insurance, given our sets of minimum prices. For example, the first row in Table 5.2 shows the 

quantiles for minimum prices of 130 € for wheat, 110 € for maize, and 240 € for rape seed given 

an insured bundle covering 11 metric tons of wheat, 18 metric tons of maize, and 1 metric ton 

of rape seed. The 1 percent quantile in the first row implies that a loss of 267 € or bigger occurs 

for such a bundle once every 100 years. The 0.1 percent quantile in the first row implies that a 

loss of 753 € or bigger occurs for such a bundle once every 1,000 years, and the 0.01 percent 

quantile shows that a loss of 1,003 € or bigger occurs for such a bundle once every 10,000 years. 

The last column in Table 5.2 shows that underwriting the lowest price bundle has a negative 
expected profit of 𝐸(𝑃𝐿) = -0.83 € because the premium level is low for minimum prices 𝐾 far 

below the initial spot price 𝑆௧. 

A likely reason for too small premiums at low minimum prices is the uniform application of the 

median volatility at maturity 𝑇 from the 10,000 forecasts in the Black (1976) formula at all price 

levels, independent of their distance to the current spot price. Ghysels et al. (1996) hint at the 

fact that in practice the implied volatility of option heavily depends on calendar time 𝑡, the 

time to maturity and the moneyness of an option. These factors may create various biases in 

option pricing or hedging when the Black-Scholes implied volatilities are used to evaluate new 

options at different strike prices and maturities. This phenomenon is usually called “volatility 

smile” as the difference between implied Black-Scholes volatilities and the constant volatility 

at maturity 𝑇  resembles a U-shaped pattern centred around the current spot price, cf. Rubin-

stein (1985) for an early empirical application showing the smile. Besides stochastic volatility, 

Ghysels et al. (1996) mention price jumps, transactions costs, bid-ask spreads, non-synchronous 

trading, and liquidity problems as possible sources for the volatility smile. In our case this implies 

that insurers will have to derive factors inflating the volatility at maturity 𝑇, resulting from the 

stochastic forecasts, in a non-linear way, depending on the distance of the insured minimum 

price from the current spot price. The derivation of such factors depends on the trade-off be-

tween price competitiveness and solvency and is a practical decision which we leave open 

to a potential insurer. 

If the insurer underwrites higher minimum prices it will run a higher default risk. The quantile at 

which the crop price insurance remains profitable increases as we move down the rows of 

Table 5.2 until the last row, where the ruin probability reaches more than 25 percent. As can be 

seen in the last column, underwriting a riskier minimum price creates positive expected profits 

as the bias from the volatility smile becomes smaller, but it requires far bigger amounts of sol-

vency capital to keep the insurance business afloat. 

The relevance of the required solvency capital presented in Table 5.2 can be illustrated by 

combining the necessary equity capital with the rate of return of Austrian insurance companies 
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in the property-liability business. Url (2019) shows that the rate of return on equity was 10 percent 

in 2019, over the last five years the average was 9.5 percent. This implies that the provision of 

solvency capital of 267 €, necessary to keep the business afloat at the 100-year ruin probability 

(the 1 percent quantile in the first row), creates costs of capital of 25.4 € (= 267 x 0.095). Given 

that the cost of capital can be distributed over 30 metric tons of crops in the bundle this results 

in a surcharge of 0.85 € to the premium levels presented in the first row of Table 4.1 which covers 

the cost of providing solvency capital for the insurer. An institutional set-up of the insurer as a 

mutual could reduce the need to generate a constantly high rate of return on equity. Alterna-

tively, continuous hedging strategies can reduce the ruin probability effectively, but at the cost 

of buying and selling options and continuously watching the derivatives market. 

The representative survey among Austrian farmers by keyQUEST (2019) revealed another inter-

esting detail about their potential demand for crop price insurance. Out of the interviewed 

group of crop-growing farmers 13 percent had a clear interest for crop price insurance and 

another 65 percent were interested if conditions would be suitable, in total 78 percent articu-

lated an interest in such a product. Given a combined harvest of 3.53 mn metric tons of wheat, 

maize and rape seed, respectively, this gives a potential insured quantity of 2.75 mn metric 

tons, i. e. 78 percent of the combined harvest. 

The conjoint analysis by keyQUEST (2019) also revealed the distribution of the demand for 

wheat price insurance over the minimum prices given in the first column of Table 4.1, for insur-

ance premiums without government subsidies. In this case, 11.8 percent of wheat farmers pre-

ferred the minimum price bundle in the first row of Table 4.1 i. e. 130 €; 14.7 percent preferred 

140 €, most farmers (29.4 percent) opted for 150 €, and 17.6 percent mentioned 160 € as their 

preferred price. Each of the upper three minimum prices received support by 8.8 percent of 

farmers, respectively. Given these results from market research we estimate the potential an-

nual net premium volume (net of taxes, costs of capital, administration, and distribution costs) 

for crop insurance in Austria at € 9.5 mn (78 percent of the harvest insured). This compares well 

to the gross premium income of the main agricultural insurer (Österreichische Hagelversicher-

ung) in 2018 of € 156.2 mn (FMA, 2019). 
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Table 5.1: Comparison of historic and simulated daily nearby futures prices, 2000-2019 

 

S: MATIF, estimated from 10,000 Monte Carlo forecasts of the volatility based on Bayesian normal linear model with 
AR(1) stochastic volatility using R-package stochvol (Kastner, 2016). The forecast horizons are 6 months for rape seed 
and 9 months for wheat and maize.  

 

 

Table 5.2: Profit and loss distribution for bundles of crops at selected insured minimum prices 
(Normal linear model) 

 

S: Own computations based on 10,000 simulated accumulated return paths using the Bayesian linear normal model 
for each crop. The insured bundle covers 11 metric tons of wheat, 18 metric tons of maize, and 1 metric ton of rape 
seed at the insured minimum prices per metric ton given in columns 1 to 3. Profits result from the premium income for 
the insured bundle based on insurance premium shown in Table 4.1 and losses result from payouts for the insured 
bundle if the forecasted price level at maturity T is below the insured minimum price. The 1 percent quantile of the 
loss distribution provides the information that a loss of this size or bigger occurs once every 100 years.  

 

Wheat Maize Rape 

seed

Wheat Maize Rape 

seed

Minimum 99 105 171 38 54 215

0.1 percent quantile 100 106 172 83 75 246

1 percent quantile 104 111 181 114 108 273

5 percent quantile 108 118 201 140 129 301

Median 156 157 324 204 178 372

95 percent quantile 252 236 474 298 246 461

99 percent quantile 270 254 508 362 296 507

99.9 percent quantile 290 261 520 489 404 576

Maximum 293 265 525 634 539 743

Historical Forecasted

W heat Maize Rape seed 0.01% 0.10% 1% 5% 10% 25%

130 110 240 -1003.19 -752.58 -266.99 6.94 6.94 6.94 -0.83

140 120 260 -1159.75 -912.33 -401.37 -68.89 17.95 17.95 2.67

150 130 290 -1316.60 -1044.08 -525.05 -182.76 -32.31 41.10 10.92

160 140 310 -1468.14 -1181.42 -634.20 -286.15 -129.03 71.27 26.42

170 150 330 -1577.84 -1291.08 -742.88 -384.12 -217.96 36.58 50.54

180 160 350 -1653.31 -1413.92 -869.66 -467.08 -294.37 -17.55 82.09

190 170 370 -1705.33 -1486.52 -974.31 -564.30 -355.62 -55.80 118.06

Lower quantiles of the profit/loss distribution Mean profit of 

insured bundle
€ per metric ton € per insured bundle

Insured minimum price level
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6. Robustness 

The time series properties of log-returns in Table 2.1 indicate the prevalence of outliers. For this 

reason, we use an alternative stochastic volatility model with heavy-tailed innovations. The Stu-

dent-t linear stochastic volatility model is described in Kastner (2015) and substitutes the normal 

distribution in the equation for the log-returns in the stochastic volatility model above by a Stu-

dent-t distribution: 

 𝑦௧~𝑡ఔ(0, 𝑒), 

with 𝑣 degrees of freedom. This model has one additional parameter (𝑣) to be estimated from 

the data. We use a uniform a priori distribution for 𝜈~𝒰(2,100) providing upper and lower a priori 

bounds for the degrees of freedom of the t-distribution. The lower bound (2) provides a higher 

probability of outliers and the upper bound (100) brings about a t-distribution which is already 

close to the normal distribution (Kastner, 2015). Table 6.1 presents the results and shows that the 

estimates for the degrees of freedom parameter 𝑣 are very low for wheat and maize, while the 

estimate of 13 for rape seed still indicates more than usual outliers. This confirms our conclusion 

that log-returns show excessively many outliers compared to a normal distribution. 

The associated profit/loss distribution for this model is documented in Table 6.2 and shows a 

capital need for the bundle with the lowest minimum prices at the 1 percent ruin probability of 

485 €, i. e. some 80 percent above the capital requirement under the normal distribution as-

sumption. 

Another possible extension of the stochastic forecasting model would be to add autocorrela-

tion of the log-returns to the normal linear stochastic volatility model. The equation for the log-

returns in the stochastic volatility model above changes to 

 𝑦௧~𝑁(0 + 𝛽𝑦௧ିଵ, 𝑒), 

with β showing the degree of autocorrelation in log-returns. We use a flat a priori distribution for 

this parameter 𝛽~𝑁(0,10000) with zero mean. Given low autocorrelation coefficients of -0.06 

(wheat), -0.03 (maize), and -0.002 (rape seed) this prior fits well with the time series properties 

of log-returns. Table 6.3 shows the estimates for this model, which are close to the estimates of 

the normal linear stochastic volatility model. The 1 percent quantile for the first minimum price 

bundle in Table 6.3 shows a loss of 433 € or more per bundle, i. e. 60 percent of the value gen-

erated by the normal linear stochastic volatility model. 

Our results for alternative specifications of the mean process show that deviations from a 

Gaussian log-return process result in higher losses for given levels of the ruin probability. A pos-

sible insurer would have to take this margin into account, when computing the premium level 

and providing the solvency capital. Nevertheless, high solvency capital requirements under 

non-Gaussian assumption can also be avoided by actively hedging the insurance portfolio on 

derivatives market. 
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Table 6.1: Estimation results for Bayesian normal linear models with stochastic volatility for log 
returns of wheat, maize, and rape seed nearby futures 

 

S: Estimation based on Bayesian normal linear model with AR(1) stochastic volatility using R-package stochvol (Kast-
ner, 2016). ESS shows the effective sample size.  

 

Table 6.2: Profit and loss distribution for bundles of crops at selected insured minimum prices 
(Student-t linear model) 

 

S: Own computations based on 10,000 simulated accumulated return paths using the Bayesian linear normal model 
for each crop. The insured bundle covers 11 metric tons of wheat, 18 metric tons of maize, and 1 metric ton of rape 
seed at the insured minimum prices per metric ton given in columns 1 to 3. Profits result from the premium income for 
the insured bundle based on insurance premium shown in Table 4.1 and losses result from payouts for the insured 
bundle if the forecasted price level at maturity T is below the insured minimum price. The 1 percent quantile of the 
loss distribution provides the information that a loss of this size or bigger occurs once every 100 years.  

Parameter Mean Standard ESS

dev iation 0.05 0.5 0.95

μ -10.19 0.26 -10.62 -10.19 -9.77 2699

φ 0.99 0.00 0.98 0.99 0.99 164

σ 0.26 0.03 0.22 0.26 0.31 76

exp(μ/2) 0.01 0.00 0.01 0.01 0.01 2699

σ2 0.07 0.01 0.05 0.07 0.09 76

ν 2.80 0.15 2.56 2.80 3.07 269

μ -10.37 0.16 -10.64 -10.37 -10.11 2286

φ 0.97 0.01 0.95 0.97 0.98 105

σ 0.36 0.04 0.30 0.36 0.42 66

exp(μ/2) 0.01 0.00 0.00 0.01 0.01 2286

σ2 0.13 0.03 0.09 0.13 0.18 66

ν 3.18 0.21 2.86 3.17 3.55 172

μ -9.90 0.13 -10.08 -9.92 -9.67 15.4

φ 0.92 0.07 0.76 0.95 0.98 3.6

σ 0.32 0.19 0.16 0.23 0.70 3.4

exp(μ/2) 0.01 0.00 0.01 0.01 0.01 15.4

σ2 0.13 0.16 0.02 0.05 0.48 3.4

ν 12.52 20.00 3.81 4.34 67.13 7.5

Quantiles

Wheat

Maize

Rape seed

W heat Maize Rape seed 0.01% 0.10% 1% 5% 10% 25%

130 110 240 -1339.81 -1073.90 -484.92 -0.55 0.01 0.01 -14.77

140 120 260 -1480.86 -1210.92 -616.71 -139.00 0.11 0.11 -23.43

150 130 290 -1606.12 -1421.67 -767.46 -284.65 -70.49 1.14 -37.09

160 140 310 -1743.00 -1564.44 -919.00 -422.71 -210.39 5.48 -55.49

170 150 330 -1990.74 -1751.25 -1070.18 -560.61 -340.53 -39.07 -72.20

180 160 350 -2201.79 -1923.76 -1225.17 -687.19 -451.85 -131.73 -74.93

190 170 370 -2372.91 -2094.89 -1329.33 -780.46 -543.88 -190.10 -53.82

Insured minimum price level Lower quantiles of the profit/loss distribution Mean profit of 

insured bundle

€ per metric ton € per insured bundle
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Table 6.3: Estimation results for Bayesian normal linear models with stochastic volatility for log 
returns of wheat, maize, and rape seed nearby futures 

 

S: Estimation based on Bayesian normal linear model with AR(1) stochastic volatility and AR(1) in log-return equation 
using R-package stochvol (Kastner, 2016). ESS shows the effective sample size.  

Parameter Mean Standard ESS

dev iation 0.05 0.5 0.95

μ -9.70 0.10 -9.87 -9.70 -9.54 1207

φ 0.86 0.01 0.84 0.86 0.88 286

σ 0.92 0.06 0.83 0.92 1.03 110

exp(μ/2) 0.01 0.00 0.01 0.01 0.01 1207

σ2 0.85 0.12 0.68 0.84 1.06 110

μ -9.98 0.10 -10.14 -9.98 -9.82 2813

φ 0.87 0.01 0.85 0.87 0.88 497

σ 0.88 0.04 0.81 0.87 0.94 263

exp(μ/2) 0.01 0.00 0.01 0.01 0.01 2813

σ2 0.77 0.07 0.66 0.77 0.89 263

μ -9.67 0.05 -9.75 -9.67 -9.59 2811

φ 0.78 0.02 0.74 0.78 0.81 287

σ 0.68 0.03 0.63 0.68 0.74 259

exp(μ/2) 0.01 0.00 0.01 0.01 0.01 2811

σ2 0.47 0.05 0.40 0.47 0.55 259

Quantiles

Wheat

Maize

Rape seed
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7. Conclusions 

In 2005 the EU lowered the guaranteed minimum prices for crops in its Common Agricultural 

Policy and stopped market interventions. Consequently, prices started to fluctuate more inten-

sively, and farmers’ incomes are now subject to higher price volatility. US-farmers are more fa-

miliar with this phenomenon because US-crop prices fluctuate since the beginning of the 1970s 

and financial markets offer a rich set of agricultural derivatives. Moreover, the US-government 

provides a margin insurance scheme to US-farmers. Although, agricultural futures and options 

are also available on Euronext, most European farmers operate small scale family farms and 

do not use financial derivatives. 

A crop insurance scheme could provide an interesting alternative to European farmers by re-

ducing income risk resulting from extremely low prices without requiring financial literacy and 

continuous market observation. Contrary to derivative markets, insurance contracts may cover 

minimum prices which are substantially below the current spot price. We develop a hypothet-

ical insurance contract for a bundle of wheat, maize, and rape seed prices that can be bought 

before the start of the planting season and that matures after the end of the harvesting season. 

We compute the premium per metric ton by applying a commodity option pricing formula and 

compute the associated variance measure from Monte Carlo simulated forecasts of a Bayes-

ian normal linear model with autoregressive stochastic volatility. The resulting net premium lev-

els for bundles of low minimum prices are also small in comparison to the spot prices prevailing 

at the date of buying insurance. The gross insurance premium would have to be recharged by 

adding costs of capital, administrative and distribution costs as well as taxes. 

This model also provides us with the basis to compute the profit/loss distribution for several in-

surance bundles defined by various bundles of minimum prices. The results show, that even for 

prices far below the spot price at the time of buying the insurance contract, the required sol-

vency capital to keep the insurance business afloat at the one percent ruin probability is com-

paratively high and causes capital costs which are considerably above the expected profit of 

an insured bundle. Another caveat is the cross-correlation among log returns of nearby futures 

prices in our sample. Our univariate stochastic forecast models do not consider these cross-

correlations and therefore our estimates of the required solvency capital may be at the lower 

bound. Combining our approach with a multivariate stochastic volatility model would be fruit-

ful avenue of future research. 

One alternative to holding large amounts of solvency capital is to start hedging the insurance 

portfolio with options on the derivative market if the spot price approaches the insured mini-

mum price. Nevertheless, the insurer would need some capital if it pursues a hedging strategy; 

the solvency capital requirement would then be the price of an option with a strike price close 

to the current spot price. 
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