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Abstract:  

This paper describes interfuel substitution for coal, oil, gas and electricity at a level of 12 
activities. We use cross section data in each activity for appliance technologies 
(heating/cooling, steam generation, industrial processes, motors and lighting/computing) to 
estimate fuel input demand equations by appliance technology in a panel estimation with 
fixed effects for activities and a uniform effect of technical progress across appliance 
technologies. In a synthesis with the time series approach we estimate fuel input demand 
equations at the ‘aggregate’ level of activities as the weighted sum of appliance technologies 
by inserting parameters from the panel estimation. In this ‘disaggregated’ model the impact of 
prices and of technical progress in each activity can be decomposed into two effects: (i) 
changes in the share of appliance technologies and (ii) fuel switch within appliance 
technologies.   

Key words: Interfuel substitution, appliance technologies, panel data estimation 
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1. Introduction 

The analysis of industrial energy demand plays an important role in applied economics since 

the first oil price shock in 1973 and recently due to the impact studies on Kyoto policies. The 

seminal studies for industrial energy demand in the setting of a K,L,E,M production or cost 

function using the translog cost function are Berndt, Wood (1975) and Hudson, Jorgenson 

(1976). Industrial energy demand is often treated as a two level decision process, where firms 

decide upon total energy demand first and then about the single fuel use as in Harvey, 

Marshall (1991). Models of interfuel substitution using so called ‘flexible functional forms’ 

like translog have therefore become an important line of research on industrial energy demand 

analysis also including power generation (for example: Atkinson, Halvorsen (1976), Ko, Dahl 

(2001), Magnus, Woodland (1987) and Urga, Walters (2003)).  

Analysis of total energy demand was from the beginning puzzled with the role of technology 

in energy demand reaction patterns on price changes. Already Berndt, Wood (1975) 

intensively discussed their results of capital – energy complementarity and the introduction of 

different types of neutral or non-neutral technological change played an important role. 

Berndt et al., 1993 provide a literature overview on that and suggest different types of 

technical change as well as the concept of embodied technical change in a K,L,E,M translog 

cost function. The idea that technical change is embodied in capital goods can be successfully 

analysed in the concept of a cost function with (short run) variable and fixed factors. There 

are several studies treating the capital stock and/or a deterministic trend as these ‘quasi fixed’ 

factors in a K,L,E,M cost function (Morrison, 1989, 1990). The embodied nature of technical 

change leads to the distinction of short and long run reactions to price changes and that 

adjustment to price reactions takes time and is costly as it requires investment. On the other 

hand the option of adjustment by changing technologies opens up a wider range of reaction 

patterns. Both aspects have been discussed extensively in impact analysis of Kyoto policies, 

where the latter aspect has been dealt with under the notion of ‘induced technical change’ or 

‘induced innovation’. Newell et al. (1999) emphasize the importance of regulation for induced 

innovation and Popp (2002) discusses the role of energy prices. If technical change is induced 

it can also be seen as endogenous, so that measures to reduce greenhouse gas emissions must 
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take into account different channels, by which technological change might be induced (see 

also Ferrante, 1998 and van der Zwaan et al., 2002). The problem lies mainly in the 

information about the exact linkages between measures and induced technical change. 

Economic instruments that only aim at a change in effective energy prices (including 

emissions trading) might lead to high adjustment costs, if adjustment heavily depends on 

technological change. If on the other hand the design of the instruments also induces 

technological change, adjustment will be eased and become less costly. This argument not 

only holds for overall energy efficiency, but also for interfuel substitution. Recent studies on 

emissions trading (see for example: Boehringer, 2002 and Rose, Oladosu, 2002) have shown, 

that an important amount of emissions reduction stems from interfuel substitution between 

coal, oil, gas and electricity, as these fuels exhibit rather different CO2 emission factors.1 

Therefore the question arises, if interfuel substitution also requires technological change 

brought about by investment and if this change can also be induced by instruments that at the 

same time change effective energy prices. Some recent studies analyse panel data sets of firms 

to get more insight into interfuel choice of firms as Bjorner, et.al. (2001) and Bousquet, 

Ladoux (2002). In the analysis of overall energy efficiency it is the specific energy use factor 

embodied in the capital stock that matters (as in Newell et al., 1999). In the case of interfuel 

substitution it is the flexibility of the applied capital stock to use different fuels that matters 

and determines the extent to which interfuel substitution is bound to investment in new capital 

stock. 

In this paper we introduce a new notion of embodied or induced technological change in a 

model of interfuel substitution by dealing with appliance technologies. Although we do not 

deal explicitly with different types of capital stock, we know that the appliances are linked to 

different capital goods with different flexibility in fuel use. The paper is organized as follows: 

Section 2 describes three different models of interfuel substitution. The first one is a time 

series model for different industries with uniform technical change by industry. The second is 

a model of interfuel substitution for different appliance technologies, which can be estimated 

                                               
1 If we normalize the emission factor of coal as 100, the emission factor of oil products is 78 and of gas 55.  
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with cross section data by pooling over industries. This model starts from the hypothesis, that 

appliance technologies fully determine the flexibility for interfuel substitution at the industry 

level. Finally the third approach combines both methods into a consistent estimation method 

for time series data. The properties of the resulting model allow to split up reactions to price 

changes into changes in the structure of appliance technologies and ‘pure’ interfuel 

substitution effects. Two specifications of technical change can be formulated, namely a 

uniform rate by the technology in use or a uniform rate by industry. In section 3 we present 

empirical results from estimation for price elasticities in the three models and results of a 

simulation experiment on emissions trading with the combined model (model 3). In this 

experiment we attempt to show a decomposition of price reactions into technological change 

and ‘pure’ interfuel substitution. A final section draws some conclusions.  

2. Models of Interfuel - Substitution 

Technological change can be incorporated in different ways into models of interfuel 

substitution. The state of the art model of interfuel substitution starts from a flexible form of a 

cost function (Translog or Generalized Leontief) and derives factor demand functions 

applying Shephard’s lemma. In the literature so far the Translog approach dominates. The 

models presented here all start from the same specification of factor (or input) demand 

function, but at different aggregates concerning industries and appliance technologies. These 

differences allow to test empirically the role of technology in interfuel substitution in a broad 

sense.  

Model 1: A Time Series Approach for Different Industries 

Starting point of our model is an extended Generalized Leontief (GL) function, as introduced 

by Morrison (1989, 1990). For s industries we face a cost function, where total variable costs 

for fossil energy and electricity, EC, depend on total energy demand (‘output’ of the bundle), 

EN, and prices p of fuels i,j. Fuel prices are also different by industries. The extension of the 
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original GL function lies in the introduction of a deterministic trend t by fuel as a ‘quasi fixed’ 

factor: 
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Applying Shephard’s lemma allows us to derive factor or input demand functions in terms of 

optimal input-output coefficients for the i fuels coal, oil products, gas and electricity.  
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This model can be applied to data for 10 manufacturing industries, services (excluding 

transport) and households. Equation (2) can be further directly used to calculate own and 

cross price elasticities εij = ∂log(Eni)/∂log pj. Concavity restrictions of the underlying cost 

function imply, that Σ εij > 0 for i ≠ j and Σ εij = 0 for all i and j as well as symmetry of the 

Hicksian cross price effects. These conditions guarantee negative own price elasticities and 

are introduced in the GL model by the symmetry restriction on the αij parameters: αij = αji. In 

the case of the GL function derivation of elasticities yields: 

 

(3) εij = −(αij/2) (EN/Eni) (pj/ pi) ½  

 

The ‘quasi fixed’ factor t as a measure of technical change enters in two terms in equation (2). 

The first term δit½ might capture different trends in technology in favour or against certain 

fuels whereas the second term γt, which is restricted to be the same for all fuels should 

measure ‘pure’ technological progress for all fuel applications. Therefore we expect γ to be 
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negative. The driving force for technical change in this model is a deterministic trend, which 

cannot be influenced by policy.  

Model 2: A Cross Section Approach for Different Appliance Technologies 

The same GL function can now be used at the level of appliance technologies, where we make 

use of the following data set for fuel use for s industries and appliance technologies k: 

 Appliances, k TOTAL 

Fuels, i Enik Eni 

TOTAL Enk EN 

The fuel input coefficient from equation (2) Eni/EN in one industry can now be described as 

the weighted sum over appliances of the fuel input coefficients Enik/ENk with the weights 

wk = Enk/EN: 
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The appliance technologies k are: heating/cooling, steam generation, industrial processes, 

motors and lighting/computing. A different treatment of the role of technology can now be 

applied by specifying interfuel substitution for each appliance technology k, thereby 

postulating that the appliances are directly linked to some technologies embodied in the 

capital used and that this fully determines the flexibility of fuel use. The GL function for the 

coefficients Enik/ENk is the same as above in (2):  
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Here we start from the assumption that prices in each industry s are the same across appliance 

technologies.  

The factor demand function (5) can then be specified by pooling over industries s and using 

the panel data set with fixed effects, which in matrix notation yields: 

 

(6) Es = i ΑS + ΠS Αij + TI ∆i + TII Γ + εS 

or  
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In this specification Es is the column vector of all t observations in all s industries for the 

coefficient Enik/ENk. The fixed effects are captured by the αS vector, where i is the summation 

diagonal matrix. All variables from (2) are now in matrices Π, ΤΙ and TII and are multiplied 

by parameter (column) vectors A, ∆ and Γ. Matrix Π contains all t observations in all s 

industries for all (ij) price variables π = 
½










i

j

p
p

and vector A contains the parameters for all 

fuels ijα . The two technological change terms can be found in the two diagonal matrices TI 

and TII (as all t observations are identical in all s industries for the deterministic trend t). The 

corresponding parameter values are described in ∆ (all parameters δi) and Γ (the parameter γ) 

and υs represents the vector of disturbances. The assumption that technical change is a 

uniform deterministic trend for each appliance technology k regardless of the industry might 

be seen as too restrictive. The alternative model without this deterministic trend can therefore 

also be tested: 
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From both specifications parameters of the fixed effects for each industry αSk as well as for 

each appliance technology αij,k can be estimated and used to derive own and cross price 

elasticities by appliance technology:  

 

(8) εij,k = −(αij,k/2) (ENk/Enik) (pj/ pi) ½  

 

Model 3: A Combined Cross Section and Time Series Model 

Both models can now be combined in a consistent procedure starting from the definition in 

(4). In the literature we find different methods of combining cross section and time series 

models into a consistent framework. Most applications in this field deal with demand systems 

of private consumption combining cross section data sets from household surveys with 

aggregated data from national accounts. The problem can be approached from a theoretical 

point of view as well as from an applied econometric perspective. From a theoretical 

perspective the question of aggregation of individual utility or cost function arises, which can 

be dealt with in a concept of ‘exact aggregation’ as outlined in Jorgenson, Lau, Stoker (1980). 

There one also finds conditions for the consistent stochastic specification of time series and 

cross section data in such a model of ‘exact aggregation’. The other approach combines 

variables or parameter estimates from both models as in Bardazzi, Barnabani (2001). They 

use cross section data from household surveys to derive an estimate of income elasticities of 

goods, which are then inserted in a time series estimation of an AIDS model. The 

methodology used here follows this latter approach as it is assumed that the definition in (4) 

describes the aggregation rule and that the GL cost and factor demand functions by appliance 

technologies can be aggregated in each industry. Re-inserting the results of (5) into this 
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definition could yield two versions of the combined model according to the treatment of 

technical change.  

The first model assumes that appliance technologies determine fuel demand, but that technical 

change can be captured by a deterministic trend by fuels and industry as in (2). The cross 

section estimates for - aij,k without deterministic trend as in (7a) are therefore combined with 

(2) and (4) to yield:  
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The second more restrictive model assumes that appliance technologies determine short term 

fuel flexibility as well as technical change and use the deterministic trend by appliance 

technology as specified in (5), (6) and (7) to get: 
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One could even imagine a more restrictive model, where the constant αi' is substituted by the 

product of the fixed effect of panel data estimation αSk and the weights wk. In this model we 

derive parameters β1i, β2i and β3i to combine cross section and time series information in an 

efficient way. The prices parameter αij in (2) is now defined by the product of the parameter 

β1i with the weighted sum of the cross section parameters Σwk - aij,k : 

 

(10) ∑=
k

kijkiij w ,1´ αβα  
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where the symmetry restriction on the αij parameters: αij = αji can now be applied to this 

product. Own and cross price elasticities can now be written as: 

 

(11) εij = −( ∑
k

kijki w ,1 αβ /2) (EN/Eni) (pj/ pi) ½  

 

Interfuel substitution is therefore not only determined by prices, but also by changes in the 

structure of the k energy appliances as well. This can be seen as another source of exogenous 

technical change. In a complete model one would additionally aim at endogenizing the 

weights of appliance technologies wk, as that represents additional potential for adjustment, 

e. g. to price shocks. If appliances with high substitution potential become more important 

after a price shock, the aggregate substitution elasticity rises. A change in the structure of 

appliances has by itself an impact on fuel mix at given prices as not all fuels are represented 

in each technology. This is especially interesting for coal, which only is used in industrial 

processes and for electricity, where we have one appliance with no substitution potential 

(lighting/computing). Therefore an increase in the weight of lighting/computing has a direct 

positive impact on electricity demand.  

3. Empirical Results 

The three models lined out above have been estimated using time series data from Austrian 

energy balances (1976 – 2000) and cross section data from the survey on energy use in 

Austria (1993 – 2000). The sectoral classifications in both sources are identical and comprise 

21 sectors with a disaggregated treatment of transport (which has not been included in our 

study), one (other) services sector, one household sector and a disaggregated treatment of 

manufacturing industries. The data sets have also been made consistent with each other by 

Statistics Austria, so that the aggregation condition of equation (4) above is fulfilled for the 
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sample 1993 – 2000 using both data sets.2 For the time series model the industries have been 

aggregated to the level consistent with National Account data, for the panel data estimation 

the full range of 21 sectors has been used. The estimation parameters of all three models are 

first of all used to derive own price elasticities and compare them with each other. Then the 

model is used to calculate a ‘baseline’ scenario up to 2010 using price forecasts from the most 

recent IEA World Energy Outlook. As a simulation experiment we then apply an emissions 

trading regime for manufacturing, where we use results from another study (Kletzan et al., 

2002) for economic consequences of emissions trading. The changes in output by industry are 

implemented in our simulation via adjustment in the structure of processes (= appliance 

technologies) in each industry. That allows us to decompose the fuel demand reactions into a 

‘pure’ interfuel substitution effect and a ‘technological’ effect.  

3.1 Estimation Results 

The time series model (equation (2)) has been estimated implying the concavity and 

symmetry restrictions of the GL function. According to (3) own price elasticities have been 

derived, that all fulfill the microeconomic condition of negativity (Table 1). We get the well 

known result from other studies that these elasticities are higher for coal and oil products and 

lower for gas and electricity (where availability of infrastructure and ‘locking in’ plays a role). 

We further find that coal input cannot be explained by this model in a statistical significant 

way in some sectors. 

The cross section model is estimated in the two versions of (7) and (7a) with fixed effects for 

industries. Not all fuels are equally important for each appliance, so that we had to construct a 

balanced panel for each appliance in a first step. Lighting/computing is excluded as this 

appliance is a ‘corner solution’ (cf. Bousquet, Ladoux, 2002) to the problem of interfuel 

substitution with electricity as the only input. Table 2 shows the amount of heterogeneity of 

own price elasticities derived from estimated parameters across appliances. In general the 

                                               
2 We gratefully acknowledge that Wolfgang Bittermann from Statistics Austria has made available these data for us in 
electronic form. 
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elasticities are very low for motors, where no short term fuel switch between oil products and 

electricity without investment is possible. The rather low elasticities for heating/cooling might 

reflect the low shares of these appliances in the overall energy use of industries. Fuel demand 

is only elastic in industrial processes, where multi-fuel structures dominate. It is interesting to 

note that even in steam generation, where multi-fuel structures also exist, the elasticities are 

much lower than in industrial processes. Furthermore we observe that there are only slight 

differences between the results of the two different specifications. The conclusion is that a 

model, where the main impact of technical change on each fuel is determined by the appliance 

technology does not perform significantly different from a model without this assumption.  

Table 1: Own price elasticities, time series GL function  
 Coal Oil products Gas Electricity 
     
Ferrous and Non-Ferrous Metals − 0.02 − 1.66 − 0.60 − 0.13 
Non-metallic Mineral Products − 0.35 − 0.69 − 0.13 − 0.09 
Chemicals − 0.77 − 0.54 − 0.06 − 0.03 
Machinery, Electronics, etc. 0.00 − 0.44 − 0.10 − 0.01 
Transport Equipment − − 0.51 − 0.13 − 0.29 
Food and Tobacco − 1.98 − 0.24 0.00 − 0.02 
Textiles, Clothing and Footwear − − 0.09 − 0.20 − 0.04 
Wood − − 0.11 − 0.09 − 0.18 
Paper, Pulp and Printing − 0.53 − 1.18 − 0.07 − 0.09 
Other Industries − 1.44 − 1.11 − 0.22 − 0.03 
Services − − 0.08 − 0.09 − 0.01 
Households − − 0.06 − 0.15 − 0.06 

Table 2: Own price elasticities, panel data estimation 

GL function without deterministic trend 

 Heating/cooling Steam generation Industrial processes Motors 
Coal  − − − 1,00 − 
Oil products − 0.09 − 0.16 − 0.40 − 0.01 
Gas − 0.03 − 0.05 − 0.01 − 
Electricity − 0.11 − − 0.04 0.00 

GL function with deterministic trend 

 Heating/cooling Steam generation Industrial processes Motors 
Coal  − − − 1.23 − 
Oil products − 0.01 − 0.01 − 0.36 − 0.07 
Gas 0.00 0.00 0.00 − 
Electricity − 0.12 − − 0.07 0.00 
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The combined model has then been estimated using the paramter estimates ( - aij,k) from the 

panel data estimation in the two different specifications of (9) and (9a). For this purpose we 

needed first to arrive at a time series (1976 – 2000) of the weights of appliances (wk). As this 

is not available we used the mean of the sample available (1993 – 2000) and inserted it into 

(9) and (9a). The parameters β1i, β2i and β3i therefore also take account of changes in these 

weights and of other additional information of the time series data. The more flexible 

approach (9) in general yields higher own price elasticities than the alternative approach, 

where technical change is restricted to be determined by appliance technologies. Comparing 

the results for the elasticities in Table 3 and 4 with those of the time series model (Table 1) we 

observe in general lower values for these elasticities in the combined model. This is consistent 

with the hypothesis that the combined model ceteris paribus, i. e. without technical change 

concerning the structure of appliances, only measures ‘pure’ interfuel substitution.  

Table 3: Own price elasticities, combined model (GL function) 

Deterministic trend by fuels and industries 

 Coal Oil products Gas Electricity 
     
Ferrous and Non-Ferrous Metals − 0.07 − 0.45 − 0.07 − 0.02 
Non-metallic Mineral Products − 0.05 − 0.01 0.00 0.00 
Chemicals − 0.56 − 2.12 − 0.25 − 0.01 
Machinery, Electronics, etc. − 5.36 − 0.16 − 0.01 − 0.01 
Transport Equipment − − 0.15 − 0.17 − 0.03 
Food and Tobacco − 0.24 − 0.15 − 0.09 0.00 
Textiles, Clothing and Footwear − − 0.06 − 0.05 0.00 
Wood − − 0.04 − 0.03 0.00 
Paper, Pulp and Printing − 0.30 − 0.59 − 0.28 − 0.01 
Other Industries − 3.39 − 0.30 − 0.15 − 0.04 
Services − 0.10 − 0.02 − 0.03 − 0.01 
Households − 0.02 − 0.02 − 0.04 − 0.01 

In general the estimation results show that appliance technologies matter together with a 

deterministic trend for each fuel representing exogenous technical change. This exogenous 

technical change is not bound itself to the appliances in use. Therefore the role of appliance 

technologies can be limited to their influence on the elasticities directly, i. e. on the flexibility 

to react to price shocks. The next logical step of endogenizing technical change would be to 

explain the development of appliances within each industry. It is very probable that prices 
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also play an important role at this stage of decision. This question cannot be analysed 

empirically at the industry level here due to the lack of data. From our estimation results we 

can only conclude that the role of technical change in interfuel substitution can be 

differentiated into an exogenous component and a component influenced by appliance 

technologies. An endogenous treatment of the use of these appliances can be seen as a 

promising path of future research towards endogenous or induced technical change in 

interfuel substitution.  

Table 4: Own price elasticities, combined model (GL function) 

Deterministic trend by appliance technologies 

 Coal Oil products Gas Electricity 
     
Ferrous and Non-Ferrous Metals − 0.22 − 0.71 − 0.06 − 0.11 
Non-metallic Mineral Products − 0.90 − 0.15 0.00 − 0.05 
Chemicals − 0.07 − 0.07 0.00 0.00 
Machinery, Electronics, etc. − 3.27 − 0.05 0.00 0.00 
Transport Equipment − − 0.09 − 0.06 − 0.11 
Food and Tobacco − 0.28 − 0.03 0.00 0.00 
Textiles, Clothing and Footwear − − 0.01 0.00 0.00 
Wood − − 0.16 − 0.10 − 0.06 
Paper, Pulp and Printing − 0.46 − 0.14 − 0.01 − 0.02 
Other Industries − 0.75 − 0.03 0.00 − 0.01 
Services − 0.12 − 0.01 0.00 − 0.01 
Households − 0.02 − 0.01 0.00 − 0.02 

3.2 A Simulation Experiment: Emission Trading 

In this section we attempt to give another indication on the importance of technical change on 

the fuel demand reactions after a price shock. For this purpose we implement the results of 

another study on a domestic emissions trading system in Austria (Kletzan et al., 2002) in our 

model as a simulation experiment. Kletzan et al. (2002) derive results for a domestic 

emissions trading system in Austria, where emissions are reduced according to the Austrian 

Kyoto target by 13 percent compared to baseline until 2010. The models used in Kletzan et al. 

(2002) are a disaggregated macroeconometric model and an econometric energy model with a 

block for interfuel substitution identical to the specification in (2) in this study. Here we use 

the combined model of specification (9) for this simulation experiment. First of all we derive 

a baseline scenario until 2010 without climate policies and with a development of 
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international energy prices as lined out in the most recent IEA World Energy Outlook. The 

permit prices resulting from the Kletzan et al. (2002) study are 13.9 € per ton of CO2 in 2006 

and 26.8 € in 2010. These permit prices are implemented as exogenous price shocks for coal, 

oil and gas in our model. Kletzan et al. (2002) also quantify the economic impact of the 

domestic emissions trading system. We use their results of output changes by industry for our 

simulation exercise. These impacts are rather small, we concentrate on the larger output 

changes in the following industries:  

Ferrous and Non-ferrous Metals (−0.33%), Non-metallic Mineral Products (+0.1%), 

Chemicals (+0.52%), Machinery, Electronics, etc. (−0.1%), Food and Tobacco (−0.25%), 

Textiles, Clothing and Footwear (+0.24%), Paper, Pulp and Printing (−0.3%).  

These output changes are translated into changes in the weights of appliance technologies by 

assuming that the price shocks generate a shift from energy intensive processes to more value 

added intensive processes. The output changes are therefore fully transformed into a decrease 

of an energy intensive appliance and/or an increase in a non-energy intensive appliance, 

which then changes the weights of all other appliances in a proportional way.   

Table 5: Effects of emission trading (combined model), without changes in appliance 
technologies (wk)  

Difference from baseline in percent (2010) 

 Coal Oil products Gas Electricity 
     
Ferrous and Non-Ferrous Metals  − 5.2  − 1.3   1.6 1.9 
Non-metallic Mineral Products  − 1.8   0.2   0.1 0.1 
Chemicals  − 55.6   22.3   − 0.8 
Machinery, Electronics, etc.   −  − 2.9   0.6 0.4 
Transport Equipment   −   0.2  − 1.1 0.2 
Food and Tobacco  − 5.3   49.3  − 0.2 0.1 
Textiles, Clothing and Footwear   −   18.6  − 0.3 − 
Wood   −   1.5  − 0.3 − 
Paper, Pulp and Printing  − 14.5   26.2  − 5.4 0.9 
Other Industries  − 73.8   4.3  − 1.9 1.0 
MANUFACTURING (total)  − 6.6   2.2  − 0.6 0.8 

In order to decompose the overall fuel demand effects we first simulate the impact of the 

emissions trading system without allowing for changes in appliances. These results (Table 5) 
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indicate a large decrease of coal and very small decreases for gas. Fuel demand is shifted to 

oil products and electricity, where demand increases.  

Table 6 describes the changes in appliance technologies derived from the output changes 

towards less energy intensive processes. In general the resulting shifts in the structure of 

appliances is very small and much beyond the variance observed in the sample from 1993 to 

2000. It must be emphasized again that a model that endogenously explains the structure of 

appliances would be superior to the simulation techniques implemented here. The impact of 

these changes in the structure of appliances has a direct impact for fuels, that dominate certain 

appliances (electricity) or are found just in one appliance (coal) and the indirect impact via the 

substitution parameters. These effects might be directed against each other: a decrease in 

industrial processes directly diminishes coal (and only coal), as this fuel is only used in 

industrial processes. On the oher hand the same decrease in industrial processes indirectly 

increases coal and decreases other fuels as the substitution elasticity in industrial processes is 

higher than in other appliances.  

Table 6: Changes in appliance technologies (wk), ‘Baseline’ vs.‘Simulation’ 
 Steam generation Industrial processes Motors 
 Baseline Simulation Baseline Simulation Baseline Simulation 

Ferrous and Non-Ferrous Metals 21.78 21.95 56.74 56.41 15.46 15.58 
Non-metallic Mineral Products 0.95 0.95 79.31 79.23 11.90 11.99 
Chemicals 41.94 41.59 17.78 17.63 37.71 38.24 
Machinery, Electronics, etc. 2.72 2.72 43.09 43.08 7.94 7.94 
Food and Tobacco 58.40 58.15 8.91 8.96 24.27 24.42 
Textiles, Clothing and Footwear 38.81 38.67 4.02 4.00 32.78 33.02 
Paper, Pulp and Printing 32.31 32.01 43.47 43.66 43.47 43.66 

Table 7 now shows the results after these changes in appliances have been implemented. 

Although these changes are very small they have important repercussions on the fuel demand 

results. A decomposition of effects can also be carried out. Table 8 describes the difference 

between the two simulations, i. e. the impact of changes in appliances on fuel demand. 
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Table 7: Effects of emission trading (combined model), including changes in appliance 
technologies (wk)  

Difference from baseline in percent (2010) 

 Coal Oil products Gas Electricity 
     
Ferrous and Non-Ferrous Metals  − 5.2  − 1.4   1.6 2.1 
Non-metallic Mineral Products  − 1.8   0.2   0.1 0.1 
Chemicals  − 57.6  − 22.8  − 0.5 0.7 
Machinery, Electronics, etc.   −  − 2.9   0.6 0.4 
Transport Equipment   −   0.2  − 1.1 0.2 
Food and Tobacco  − 5.1   35.3  − 0.2 0.2 
Textiles, Clothing and Footwear   −   16.0  − 0.3 − 
Wood   −   1.5  − 0.3 − 
Paper, Pulp and Printing  − 14.4   23.7  − 5.8 0.9 
Other Industries  − 73.8   4.3  − 1.9 1.0 
MANUFACTURING (total)  − 6.7   1.5  − 0.8 0.9 

Table 8: Impact of appliance technologies (wk) on fuel demand  

Difference from baseline in percent (2010) 

 Coal Oil products Gas Electricity 
     
Ferrous and Non-Ferrous Metals  − 0.1  − 0.1   0.1 0.1 
Non-metallic Mineral Products   −   −   − − 
Chemicals  − 2.0  − 45.1  − 0.5 0.0 
Machinery, Electronics, etc.   −   −   − − 
Transport Equipment   −   −   − − 
Food and Tobacco   0.2  − 14.0   0.0 0.0 
Textiles, Clothing and Footwear   0.0  − 2.6   0.0 0.0 
Wood   −   −   − − 
Paper, Pulp and Printing   0.1  − 2.5  − 0.5 0.0 
Other Industries   −   −   − − 
MANUFACTURING (total)  − 0.1  − 0.8  − 0.2 0.0 



–  18  – 

WIFO 

4. Conclusions 

We have introduced a new concept of endogenous technical change in a model of interfuel 

substitution via appliance technologies. Adjustment to price shocks can therefore be 

decomposed into fuel substitution within an appliance and changes in the structure of 

appliances. Endogenizing this latter adjustment is one major direction for future research. 

Although this endogenizing has not been carried out, the impact of appliances is an explicit 

treatment of the influence of technology on fuel demand. Besides that the estimation results 

show that there is still scope for further exogenous technical progress, captured here with a 

deterministic trend. There is no evidence that this exogenous technical change is also bound to 

appliances. A model incorporating this hypothesis does not perform better than a less 

restrictive model, that allows for a deterministic trend in each industry for each fuel. The 

model simulation revealed that also very small changes in the structure of appliances can have 

an important aggregate impact on interfuel substitution.  
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