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1 Introduction

Vector Autoregressions (VARs) are routinely used for structural analysis and predictive

inference in academia and policy institutions. These models, however, suffer from

overfitting issues if the number of time series is large. Bayesian solutions rely on

shrinkage priors so as to force coefficients associated with irrelevant predictors towards

zero and thus improve inference (see, among many others, Carriero et al., 2009; Bańbura

et al., 2010; Koop, 2013; Korobilis, 2013; Giannone et al., 2014; Huber and Feldkircher,

2019).

These papers propose shrinking the VAR coefficients towards a known location and

by doing so reducing the number of effective variables. This makes sense in light of the

huge number of regression coefficients. For moderately-sized panels one often overlooked

problem is that the number of parameters in the covariance matrix grows quadratically

in the number of time series. Except in a few papers working with noninformative priors

in VARs of low dimension, Bayesians use informative priors such as the inverse-Wishart

prior on the error covariance matrix Σ (or equivalently the Wishart prior on the error

precision Ω := Σ−1) and, thus, induce shrinkage. However these priors do not induce

parsimony (i.e. by restricting error covariances to be exactly or nearly zero).

Some papers that induce shrinkage on the error covariance matrix are George et al.

(2008) and Koop (2013) which use priors such as the stochastic search variable selection

(SSVS) prior. These priors assume that the variable selection parameters apply to each

coefficient individually and independently (i.e. each error covariance is either shrunk to

zero or not, independently of the other covariances). Thus, they do not capture situations

where covariances cluster together. Moreover, these techniques introduce shrinkage on the

lower Cholesky factor of Σ or Ω, implying that they are not order-invariant. In a recent

paper, Arias et al. (2023), show that the (lack of) order invariance matters for predictive
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likelihoods and hence, having techniques that are order-invariant might be preferable.1

In this paper, we develop a new method that takes the network structure of the

contemporaneous relations into account and is order-invariant. Our model assumes a time-

varying covariance matrix that decomposes the covariance matrix into a time-varying and

a time-invariant part. The time-invariant part establishes the contemporaneous relations

across equations. On this part, we introduce our new shrinkage prior. Our prior draws

on insights from the network literature and, in particular, is based on a stochastic block

model ((SBM), see, e.g., Legramanti et al., 2022).

For many applications in macro and finance the covariance or precision matrices of the

shocks can be interpreted as a network that encodes the contemporaneous relationships

between different units (such as companies, countries or variable types) and these shocks

might form clusters. For instance, shocks specific to a region might have an immediate

effect only on variables within that given region whereas other regions are impacted only

with a time lag through the VAR coefficients. These patterns have implications for the

covariances of the shocks, leading to a possibly sparse structure. For example, if such a

regional structure exists, a successful shrinkage prior should not introduce shrinkage on

the blocks of the precision matrix within a given region but should force blocks between

regions to zero. Standard shrinkage priors including SSVS and variants thereof do not

take the presence of clusters into account. Ahelegbey et al. (2016b,a); Billio et al. (2019)

use graphical models to shrink covariance matrices. However, their priors on the network

still assume that the edge probabilities are independent a priori. In addition, to sample

the network they require a Metropolis Hastings (MH) step. This can suffer from poor

mixing, especially since the parameter space is extremely large.

This motivates the present paper. Our goal is to set up a standard VAR with

heteroskedastic shocks. We use an SSVS prior (George and McCulloch, 1993) to shrink

the elements of the precision matrix to zero. However, instead of assuming that the

1For recent, order-invariant, approaches, see Chan et al. (2024) and Huber and Koop (2024).
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indicators that control whether a given precision parameter should be forced to zero or

not arise from a Bernoulli with a common (and often fixed) prior inclusion probability,

we model the latter using a SBM (see, e.g., Holland et al., 1983; Nowicki and Snijders,

2001; Legramanti et al., 2022). The resulting model endogenously detects clusters and

thus introduces shrinkage on the VAR precision matrix while taking possible within- and

cross-cluster linkages into account. The SBM we use does not require the pre-selection

of the number of clusters, rather it is inferred adaptively alongside the remaining model

parameters.

To make sure that our resulting SBM-VAR model is scalable to large dimensions, we

develop an efficient Markov Chain Monte Carlo (MCMC) sampler to simulate from the

joint posterior distribution. This sampler builds on recent advances in MCMC estimation

of large VARs (see Carriero et al., 2022).

To evaluate and illustrate our approach, we first carry out a thorough simulation

exercise. Using synthetic data generated from a variety of alternative specifications, we

show that our model accurately recovers the true network structure, and generally

improves upon the standard SSVS prior.

We then move on to a forecasting exercise involving a large set of US economic

variables. Similar to our synthetic data exercise, our model finds parsimonious network

structures although it is interesting to note that these change somewhat over time both

in terms of the number of clusters and their modularity. The forecasting exercise shows

that this property tends to lead (with some exceptions) to better forecast performance

than either an SSVS prior which does not incorporate a network structure or a

non-informative prior.

The remainder of the paper is structured as follows. Section 2 introduces the basic

VAR model, briefly describes commonly used priors on the VAR coefficients and the

error covariances, provides a brief introduction to stochastic block models in the context

of VAR error precision matrices, introduces the SBM-VAR, specifically focusing on the
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VAR precision prior, and discusses the MCMC sampler. Section 3 provides simulation

evidence that our model works well. Section 4 presents the empirical applications. Section

5 summarizes and concludes the paper. An Appendix contains additional details on the

sampler and on the data used in the empirical application.

2 Stochastic Block Network VARs

2.1 VARs with Stochastic Volatility

Our goal is to model an M -dimensional vector of time series yt that is observed at time

t = 1, . . . , T using a VAR model:2

yt = A1yt−1 + · · ·+APyt−P + εt, εt ∼ N (0,Σt), (1)

whereAj (j = 1, . . . ,M) areM×M coefficient matrices, P is the maximum lag length and

the shocks in εt are independent, zero mean and normally distributed with a time-varying

variance-covariance matrix Σt.

The existing literature has many treatments of the error covariance matrix for VARs

based on different decompositions and the manner in which time-variation is allowed for.

Perhaps the most common, see e.g. Cogley and Sargent (2005), is to take a Cholesky

decomposition Σt = LD2
tL

′
where L is lower triangular with ones on the diagonal and

D2
t = diag(ed1,t , . . . , edM,t) is a diagonal matrix of time-varying variances. It is common to

assume, as we do in this paper, that dj,t evolves according to independent AR(1) models:

dj,t = ρjdj,t−1 + σρ,jvj,t with ρj denoting the persistence parameter and σ2
ρ,j the error

variance.

Use of the Cholesky decomposition has been criticized in papers such as Arias et al.

2In our theoretical discussion we ignore deterministic terms in the model. In our empirical application
we include an intercept.
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(2023) since it leads to a lack of order invariance.3 In this paper, we use a different

decomposition of Σt which has attractive properties for our purposes in terms of ease of

interpretation and computational efficiency.

To explain our specification, we begin with the following decomposition and define

Ωt := Σ−1
t which is the error precision matrix:

Σt = DtΣDt ⇔ Ωt = D−1
t ΩD−1

t ,

where Dt = diag(ed1,t/2, . . . , edM,t/2) is a diagonal matrix of time-varying standard

deviations so that D2
t = Dt ⊙ Dt with ⊙ meaning element-wise multiplication. For

convenience, let dt = (d1,t, . . . , dM,t)
′ denote the M−dimensional vector of time-specific

log-volatilities. Note that the decomposition involves two time-invariant matrices, Σ and

Ω which, with some abuse of terminology we still refer to as covariance and precision

matrices. That is, they are the covariance and precision matrices abstracting from the

time-varying standard deviations. If elements of Ω (Σ) are zero then the corresponding

elements of Ωt (Σt) are zero.

Note that we face a choice as to whether to place our SBM prior on Ω or Σ. Either

is possible, but we place it on Ω. This is for reasons outlined in papers such as Fan et al.

(2016). This paper points out that covariance and precision matrices contain different

types of information. In the context of sparse estimation (such as we are attempting

to do using our SBM prior), working with the precision matrix may be more sensible

since precision matrices are often sparser than covariance matrices. A sparse precision

matrix does not necessarily imply a sparse covariance matrix (and vice versa). Fan et al.

(2016) point out that the covariance matrix relates to marginal correlations between

variables but the precision matrix relates to conditional correlations. That is, the precision

3Arias et al. (2023) also discusses a range of order invariant approaches and discusses their properties.
Our method for decomposing the error covariance matrix is not the same as the order invariant
specification of Archakov and Hansen (2021) but does share a similar structure to it.
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matrix encodes the conditional dependence between εi,• and εj,• the i and jth column of

E = (ε1, . . . , εT )
′. And these conditional correlations can be mapped into an undirected

graph. In essence, if a sparse graphical or network structure exists it is better to model

it via the precision matrix rather than the covariance matrix.

Decomposing Σt into Σt = DtΣDt implies that the (i, j)th element in Σt is scaled

by edi,t/2 · edj,t/2 and hence the covariances depend on the volatility dynamics across the

different equations. Moreover, and this constitutes another advantage of this

decomposition, if the prior is placed on Ω, then the model is order-invariant. It would

not be so if we used some sort of SBM prior in the Cholesky-decomposed model.

Σ can be further decomposed into Σ = DRD with D = diag(ed1/2, . . . , edM/2) and

R denoting the correlation matrix. The matrix D2 = D ⊙D can be seen to introduce

an intercept into the AR(1) models for the log-volatilities since

Dt ⊙D = diag(e(d1+d1,t)/2, . . . , edM+dM,t/2). As we will discuss below, we use this further

decomposition for computational reasons since, conditional on Dt, the rows and columns

in Σ can be sampled using a Gibbs sampler. Other related specifications, such as that of

Archakov and Hansen (2021), which do not use this decomposition of Σ can be

estimated using Bayesian MCMC methods. However, these MCMC algorithms are not

straightforward Gibbs samplers and are not scalable to large dimensions.

2.2 Network-based priors for VARs

If the number of variables M (and/or the lag length P ) is large, the model suffers from

overfitting. Most notably, the number of dynamic coefficients in the VAR is P × M2

and thus grows quadratically with M . Bayesian shrinkage priors such as the Minnesota

prior (e.g., Doan et al., 1984; Litterman, 1986; Giannone et al., 2015)) or global-local

shrinkage priors (e.g., Huber and Feldkircher, 2019; Follett and Yu, 2019; Kastner and

Huber, 2020) introduce shrinkage so as to reduce the effective number of elements in the

VAR coefficients. However, as stated in the introduction, these priors either introduce
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little shrinkage on the M(M − 1)/2 free elements of the error covariance matrix or do so

in an unstructured manner. In the homoskedastic case, it is common to use an inverse

Wishart prior on the covariance matrix of the VAR (reduced form) errors (e.g., Kadiyala

and Karlsson, 1997; Giannone et al., 2015; Chan, 2021). Often relatively non-informative

choices are made for the prior hyperparameters of the inverse Wishart prior. Many other

papers, which allow for stochastic volatility, use a Gaussian prior for the lower triangular

L (or L−1), see, e.g., Cogley and Sargent (2005); Carriero et al. (2019). This strategy

gives rise to three issues. First, it does not take a possible network structure into account.

Second, it is not clear what shrinkage on L implies for Σt or Ωt. Third, placing a prior on

L implies that all empirical findings depend on how the elements in yt are ordered. The

goal of this paper is to develop a shrinkage prior that surmounts these problems. For the

reasons given in the preceding sub-section, we will do so by constructing a prior designed

to capture a sparse network structure on Ω and, thus, the error precision matrix Ωt.

Let δi,j denote a binary indicator that equals 1 if there exists a relationship between

εi,t and εj,t and 0 if they are assumed to be conditionally independent. The indicator

δi,j will be used to set up a shrinkage prior on the elements in Ω. Following George and

McCulloch (1993) and George et al. (2008), we assume that the off-diagonal elements of

Ω, ωi,j (i = 2, . . . ,M ; j = 1, . . . ,M − 1; i < j) arise from a mixture of two Gaussian

distributions:

ωi,j ∼ δi,jN
(
0, τ 2ij,1) + (1− δi,j)N (0, τ 2ij,0

)
, (2)

with τ 2ij,1 (called the ’slab’ variance) and τ 2ij,0 (called the ’spike’ variance) denoting prior

scaling parameters such that τij,1 ≫ τij,0. These scaling parameters can be set using

an empirical Bayes approach which involves the use of the sample standard deviation of

the time series under consideration or using the OLS estimate of it from an auxiliary

regression. Another approach is to follow Ishwaran and Rao (2005) who let τ 2ij,0 = c · τ 2i,j

with c being a constant close to zero and τ 2i,j is a common (over the two distributions in
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the mixture) scaling parameter.

Given that the OLS estimates of Ω are difficult to obtain due to the presence of SV,

we follow the latter approach and estimate the hyperparameters of the prior. We follow

Ishwaran and Rao (2005) and place an inverse gamma prior on the slab variance, such

that:

τ 2i,j ∼ InvGa(aτ , bτ ),

where InvGa(·, ·) denotes the inverse gamma distribution.4 We set ατ = 5 and βτ = 4.

We obtain the spike variance by multiplying τ 2i,j with the constant c = 2.5−5.

The key point to make here is that δi,j is a binary indicator that controls which

component to use and prior independence is assumed over the elements of Ω. In other

words, the following relationship holds:

δi,j = 0 ⇔ ε•,i ⊥⊥ ε•,j|{ε•,s}s ̸=i,j ⇔ ωij ≈ 0, (3)

implying that ε•,i and ε•,j are approximately independent given the other shocks in the

system. A typical assumption is that the indicators arise from a Bernoulli prior

distribution with prior probability π:

δi,j ∼ Bernoulli(π).

Hence, the probability that δi,j = 1 is π a priori which is the same for all i, j. This

assumption does not take into account a possible network structure and thus useful

statistical information may be lost. Network models such as the ones proposed in Wang

(2015) or Billio et al. (2019) fix π = 2/(M − 1) or estimate π.

4Here, a random variable z follows an inverse Gamma distribution with density p(z|α, β) =
βα

Γ(α)z
−α−1exp(−β

z ).
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2.2.1 Combining SBMs and spike and slab priors

In this paper we embed a network structure into an SSVS prior through individual

inclusion probabilities πi,j. Since estimating N = M(M − 1)/2 separate inclusion

probabilities might lead to overfitting, we exploit the notion that shocks tend to cluster

together. To achieve this, we assume that a binary adjacency matrix ∆ with generic

element δi,j arises from a stochastic block model (SBM, see Holland et al., 1983; Nowicki

and Snijders, 2001). Instead of assuming that the indicators δi,j are i.i.d. Bernoulli

distributed with a common success probability π, we allow for a latent network involving

a SBM to govern the contemporaneous relationships among the shocks.

We start our discussion by introducing terminology necessary to describe networks.

We assume that the time-invariant network encoding can be represented by a latent,

random graph G which in our case encodes possible networks that give rise to Ω. We

furthermore assume that G is undirected (i.e. δi,j = δj,i) and unweighted (all links are of

the same magnitude). It is given by the duplet (V ,E ), where V = 1, . . . ,M denotes the

vertex set (the members of the network) and E ⊂ V × V the edge set (the connections

among its members) which has cardinality N .

The graph is random in the sense that the edge set is generated by a Bernoulli process,

but we assume the vertex set to be fixed. A binary representation of the graph can be

obtained through the adjacency matrix ∆ which has elements δi,j = 1 if an edge exists

between nodes i and j and δi,j = 0 otherwise. It is worth stressing that, in contrast

to papers such as Legramanti et al. (2022), our adjacency matrix is latent and controls

whether the elements in Ω are shrunk to zero or not.

In the case of an SBM G is driven by a community structure that clusters the nodes

into H distinct groups. For typical macroeconomic applications, these clusters could

represent country groups (e.g., emerging and developed economics), variable types (e.g.,

prices, labor market quantities or financial series) or types of shocks (e.g., demand versus
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(a) (b) (c)

Figure 1: Realization of a stochastic block model with H = 3 and M = 30. Node
and annotation colors indicate group membership. (a) Plot of the network (thicker lines
indicate higher edge probabilities). (b) Heatmap representation of the adjacency matrix.
(c) Heatmap of the edge probabilities (darker cells indicate higher edge probabilities).

supply shocks; common versus idiosyncratic shocks). We do not assume any such known

structure, but rather rather estimate both the membership of each group and the number

of groups.

Let h, k ∈ {1, . . . , H} denote the group memberships of nodes i and j, respectively.

An edge exists between i and j with probability πh,h ∈ [0, 1] if i and j are members of the

same group h. If the groups of i and j differ, an edge exists with probability πh,k. This

implies that relations within as well as across groups are assumed to be homogeneous a

priori. A typical assumption is that πh,h ≫ πh,k, such that vertices within the same group

are more likely to be connected with one another.

Figure 1 displays an example of such a network with M = 30 nodes and H = 3

groups alongside heatmaps of the implied adjacency matrix and edge probabilities. The

key feature is that variables which display similar properties are grouped together in one

of three groups. These groups, however, arise endogenously and we will use this feature

to design our prior for the elements of Ω. Before discussing the mathematical structure

of the model it is also worth emphasizing that the number of groups H is not fixed a

priori. In what follows we let the model decide on the number of groups and estimate it

alongside the remaining model parameters.

Our approach builds on the Extended Stochastic Block Model (ESBM) framework put
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forward by Legramanti et al. (2022). It extends the original SBM established by Holland

et al. (1983) and Nowicki and Snijders (2001) by providing a unified modeling framework

and an efficient sampling algorithm for a range of different model formulations, with full

uncertainty quantification and without the need to pre-specify the number of clusters H.

The SBM implies a conditional prior on the latent adjacency matrix ∆:

p(∆|Π) =
H∑

h=1

h∑
k=1

π
mh,k

h,k (1− πh,k)
m̄h,k ,

Here, Π is a H ×H symmetric matrix with generic elements πh,k. mh,k and m̄h,k denote

the number of edges and non-edges between groups h and k, respectively.

Notice that this prior only depends on the edge probabilities across groups and not

across nodes. This is the main source of shrinkage in our model and requires the

introduction of a set of group assignment indicators z = (z1, z2, . . . , zM), which is an

M -dimensional vector. Each element of z, zj, is a discrete random variable which takes

values 1, . . . , H. The node-specific probabilities can then be obtained as πij = πzi,zj .

We assume that the random discrete vector z arises from a general Gibbs-type prior

(Legramanti et al., 2022):5

p(z) = WM,H

H∏
h=1

(1− σ)nh−1, (4)

where (a)n for any a > 0 denotes the ascending factorial a(a+1)+· · ·+(a+n−1), nh is the

number of members in group h, σ < 1 a discount parameter and {WM,H : 1 ≤ H ≤ M}

a collection of non-negative weights satisfying WM,H = (M − Hσ)WM+1,H + WM+1,H+1

and W1,1 = 1. This general formulation nests a broad range of priors on the clustering

structure that can accommodate different types of networks.6

5Legramanti et al. (2022) argue that previous SBMs (e.g., Nowicki and Snijders, 2001; Kemp et al.,
2006; Schmidt and Morup, 2013; Geng et al., 2019) can be interpreted as arising from the use of different
Gibbs-type priors.

6See Lijoi et al. (2007a,b); Blasi et al. (2013); De Blasi et al. (2015); Miller and Harrison (2018) for
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We consider various Gibbs-type priors in this paper. In particular, we use the Gnedin-

process (GN; Gnedin, 2010), Dirichlet-Multinomial (DM; Nowicki and Snijders, 2001),

Dirichlet-process (DP; Kemp et al., 2006) or Pitman-Yor-process (DP; Pitman and Yor,

1997) priors. Different choices of Gibbs-type priors lead to different grouping structures.

As discussed in Legramanti et al. (2022), the DM prior typically generates modular,

relatively stable clusters with a fixed number H̄ of population clusters. The GN prior can

be seen as a generalization thereof, where H̄ is modeled as random but still assumed to

be finite in population. The DP and PY priors on the other hand favor more fragmented

networks and smaller groups with no limit on H̄ as M increases. They differ in the

growth of H, which is much faster for the PY than for the DP prior. When specifying the

hyperparameters for the Gibbs type priors, a sensible approach is to choose them such

that their expected number of clusters matches the researcher’s prior beliefs.

The SBM prior is completed by specifying a prior on πh,k. We follow Legramanti et al.

(2022) and specify independent Beta-distributed priors on πh,k ∼ Beta(aπ, bπ). Setting

aπ = bπ = 1 induces a uniform prior bounded by zero and one.

2.2.2 Priors on the remaining parameters

In this sub-section, we briefly sketch the remaining priors on the model parameters. This

includes the prior on the VAR coefficients and the prior on the parameters in the state

equation of the log-volatilities.

The prior on the VAR coefficients in a = vec(A1, . . . ,Ap) matrices in (1) is a standard

Horseshoe shrinkage prior (see, e.g., Carvalho et al., 2010). The Horseshoe implies a

hierarchical Gaussian prior on each element in a:

aj ∼ N (0, c2jd
2), cj ∼ C +(0, 1), d ∼ C +(0, 1).

reviews and examples of various priors that fall into this category.
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Here, we let cj denote a local shrinkage parameter and d a global shrinkage factor. Both

have half-Cauchy distributed prior distributions. We store these parameters in a K(=

M2P ) + 1 vector ξ = (c21, . . . , c
2
M2P , d)

′. We rely on this prior given that it works well in

large dimensions and its recent success in many macroeconomic forecasting applications

(Follett and Yu, 2019; Feldkircher et al., 2022; Bai et al., 2022) but any other large VAR

prior could be used without altering the main themes of this paper.

On the parameters of the state equation of the log-volatilities we use a truncated

Gaussian distribution with mean equal to 0.7, variance of 0.1 and support over

[−0.99, 0.99] on the persistence parameter and a Gamma distributed prior with shape

parameter 10 and rate parameter equal to 2 on the error precision of the state equation.

2.3 Posterior simulation

In this sub-section we discuss how to carry out posterior simulation in the SBM-VAR.

The joint posterior distribution of the parameters and latent states is given by:

p(a, ξ, {dt}Tt=1,Ω,∆, {τi,j}i,j,Π, z|Y )

where Y = (y1, . . . ,yT )
′. This joint distribution is not available in closed form. However,

for most parameters we have conditional distributions that take a well known form and

hence are amenable to Gibbs sampling. Here, we provide a detailed overview of the

algorithm. Additional details are provided in Appendix A.

Our MCMC algorithm cycles between the following steps:

1. Sampling from p(a|ξ, {dt}Tt=1,Ω,Y ). We sample the rows of A = (A1, . . . ,Ap)

using the triangularization algorithm developed in Carriero et al. (2022). Each of

the M rows, labeled aj,• (j = 1, . . . ,M) is normally distributed so that:

aj,•|A−j,•, ξ, {dt}Tt=1,Ω,Y ∼ N (aj,•,V a,j),
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with A−j,• being the matrix A with the jth row excluded and aj,• and V a,j

denoting the posterior mean and variance, respectively. Precise forms of these can

be found in Appendix A. Repeating this step for each row provides a valid draw

from p(a|ξ, {dt}Tt=1,Ω,Y ).

2. Sampling from p(ξ|a,Y ). The prior variances ξ are simulated based on the

algorithm proposed in Makalic and Schmidt (2016). This involves introducing

additional auxiliary parameters which are then sampled from inverse Gamma

conditionals. Based on these, the conditional posteriors of {c2j}M
2P

j=1 and d2 are

inverse Gamma as well. More details can be found in Appendix A.

3. Sampling from p({dt}Tt=1|a,Ω,Y ). We update dt for t = 1, . . . , T using the single-

move algorithm outlined in Ishihara and Omori (2012). In our simulations and

real data applications this simple sampler works well, yielding satisfactory mixing

properties.

4. Sampling from p(Ω|a, {dt}Tt=1,∆, {τi,j}i,j,Y ). Generating draws for Ω is made

difficult by the fact that it needs to be positive definite. Wang (2012, 2015) put

forward a change-of-variable approach to sequentially sample the rows and columns

of Ω. Let S = ε̃′ε̃ where ε̃ = (D−1
1 ε1, . . . ,D

−1
T εT )

′ are the VAR residuals rescaled

using the time-varying part of the error volatility. Furthermore, let [V Ω]ij = δi,jτ
2
i,j+

(1−δi,j)τ
2
ij,0 be the prior variance matrix for Ω. To sample column j (j = 1, . . . ,M)

we permute Ω, S and V Ω such that j is ordered last. We denote the permuted

matrices Ω̃, S̃ and Ṽ Ω and apply the following decomposition:

Ω̃ =
(Ω(−j)(−j) ω(−j)j

ω′
(−j)j

ωjj

)
, S̃ =

( S(−j)(−j) s(−j)j

s′
(−j)j

sjj

)
, Ṽ Ω =

( V Ω,(−j)(−j) vΩ,(−j)j

v′
Ω,(−j)j

vΩ,jj

)
,

where Ω(−j)(−j) are all columns and rows of Ω except for the j-th, ω(−j)j is the j-th

column of Ω without its j-th element and ωjj is the j-th diagonal element of Ω.
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As shown in Wang (2012, 2015) it is possible to introduce two auxiliary variables u

and v whose distributions have a well known form. In particular, we sample from

the following conditional posterior distributions:

v ∼ Ga
(T
2
+ 1,

sjj
2

)
,

u ∼ N
(
−Cs(−j)j,C

)
,

where the Gamma distribution is indicated by Ga(·, ·) and

C = (sjjΩ
−1
(−j)(−j) + diag(vΩ,(−j)j)

−1)−1.7 Having obtained a draw for (u, v), we

map them into (ω(−j)j, ωjj) via:

ω(−j)j = u,

ωjj = v + ω′
(−j)jΩ

−1
(−j)(−j)ω(−j)j.

We perform these steps sequentially for j = 1, . . . ,M to obtain an update for each

column and row of Ω.

5. Sampling from p(∆|Ω, {τi,j}i,j,Π, z). Equation (2) can be used to infer δij

(Ahelegbey et al., 2016a,b). The resulting posterior distribution p(δi,j|ωi,j, πi,j) is a

Bernoulli distribution and ∆ can be constructed by sampling from p(δi,j|ωi,j, πi,j) ∼

Bernoulli(πi,j) with

πi,j =
N (ωi,j|0, τ 2i,j) · πi,j

N (ωi,j|0, τ 2i,j) · πi,j + N (ωi,j|0, (c · τi,j)2) · (1− πi,j)
.

6. Sampling from p({τ 2i,j}i,j|Ω,∆). We update these by sampling from their inverse

Gamma distributed conditional posterior distributions. More details are provided

in Appendix A.

7A random variable z follows a Gamma distribution, with density p(z|α, β) = βα

Γ(α) (z)
α−1exp(−βz).

15



7. Sampling from p(Π, z|∆). We sample the group-specific edge probabilities in the

group assignments in two steps. First, we sample the group assignments marginally

of Π from:

z ∼ p(z|∆).

This step is carried out using Algorithm 1 proposed in Legramanti et al. (2022).

More information are provided in Appendix A.

Conditional on z we sample the group-specific probabilities from Beta distributions:

πh,k ∼ B(πh,k|aπ +mh,k, bπ +mh,k), for h, k = 1, . . . , H,

where h, k = 1, . . . , H are group indicators and mh,k(m̄h,k) denotes the number of

links (missing links) between clusters h and k.

Notice that this step implies that we first sample from the marginal (of Π) and then

from the conditional (on z). Hence, the ordering of the steps matter to obtain a

valid draw from p(Π, z|∆).

After a sufficiently long burn-in period, this algorithm yields draws from

p(a, ξ, {dt}Tt=1,Ω,∆, {τi,j}i,j,Π, z|Y ). In our simulation exercises and empirical work

we repeat the sampler 15, 000 times and discard the first 5, 000 iterations as burn-in.

Due to space constraints and to further reduce the autocorrelation of the retained draws

we keep only every other draw.

3 Simulation-based evidence

In this section we analyze how our approach performs in a controlled environment. We

generate data using a VAR(1) model:

yt = Ayt−1 + εt, εt ∼ N (0M ,Σt), Σt = DtΣDt, t = 1, . . . , T
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and y0 = 0M . We assume that each element of dj,t (j = 1, . . . ,M) evolves according

to an AR(1) process dj,t = 0.9dj,t−1 +
√
0.2νj,t with νj,t ∼ N (0, 1) and dj,0 = 0. This

VAR(1) DGP is then set up so as to differ along several dimensions. First, we analyze

model performance for differently sized models. The different sizes are M ∈ {5, 30, 50},

covering small, medium and large-sized datasets. Second, we consider the role of the length

of the sample T . Here, we set T ∈ {200, 300, 400, 500} to reflect situations commonly

encountered when working with quarterly, post-war US data (i.e. so that T is between

200 and 300) as well as monthly series (with T being 400 or 500). Third, the DGPs

assume a network structure so that the true matrix Ω under the DGP has a particular

structure which the SBM can uncover. The true Ω is generated in the following way: Each

of the variables is assigned to a cluster (with the number of true clusters depending on

M). We draw the within-group edge probabilities from the Beta distribution Beta(1, 100)

and the cross-group edge probabilities from Beta(100, 1). The elements of the adjacency

matrix are generated by drawing from a Bernoulli distribution with the respective edge

probability between variables i and j as success probability. Finally, we generate Ω as

a positive definite matrix with zero restrictions given by the adjacency matrix. We also

consider the case of no network structure. In this case, the edge probabilities are set equal

to 0.2.

This gives us a combination of 24 different DGPs. For each of these 24 DGPs we

generate 25 datasets and evaluate the performance in terms of hit rates (HRs), i.e.,

correctly classified edges in the network, of our BVAR-SBM against a benchmark model

with a standard SSVS prior on the covariances (henceforth labeled SSVS).

Our SBM-VARs differ in the clustering priors used. We consider each of the four

Gibbs-type priors mentioned in Section 2.2.1: the GN, the DM, the DP and the PY prior.

Their hyper parameters are specified such that the prior expected number of groups is

equal to 1.5 times the true number of groups (rounded to whole numbers).

We start out by discussing the absolute HRs of the posterior median ∆ of p(∆|Y )
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to the true value of ∆. Before we zoom into the DGP-specific performance, we consider

the overall performance over different values of T,M and across the realizations from

the DGP. These are, in the form of histograms, shown in Figure 2 for the DGPs where

Ω features a network structure. In this figure, each of the histograms refers to one of

the SBM priors (and the SSVS specification). The means of these histograms show the

average quality of the network approximation (measured in HRs) over the space of DGPs.

0

25

50

75

100

0.7 0.8 0.9 1
Hit rate in %

F
re

qu
en

cy

Model

GN

DM

DP

PY

SSVS

Hit rates across DGPs with network structure

Figure 2: Percentage of correctly classified edges of different SBM-VARs and the SSVS-
VAR (red) over all draws from all DGPs with underlying network structure.
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Figure 3: Percentage of correctly classified edges of different SBM-VARs and the SSVS-
VAR (red) over all draws from all DGPs with no underlying network structure.

The figure reveals that the different SBM priors all do well in terms of recovering

the true network structure. For all models considered, the mean of the distribution of

HRs is around 95 percent. By contrast, the SSVS prior that assumes the prior inclusion

probability as fixed across edges is performing significantly worse, with mean HRs that are

18



appreciably lower than the ones of the SBMs. Notice that the left-tail of the distributions

coincide, implying that all methods (including the SSVS) produce estimates of the network

that have the same lower bound on the HRs.

Next, we turn to the case where Ω features no clustering. This is shown in Figure 3.

In this case, all SBM-based models produce hit rates that are close to the SSVS models.

HRs are, however, markedly lower in all cases relative to the DGP that features clusters

in Ω. Nevertheless, these results can be interpreted in a way that adding the SBM to

the VAR does not harm network-detection accuracy if there is no particular clustering

structure and, if there is clustering, it improves accuracy appreciably.

M T Clustered DGPs Non-clustered DGPs
GN DM DP PY SSVS GN DM DP PY SSVS

5 200 2.78 2.78 2.22 3.33 90.00 0.00 -1.00 -2.00 -1.00 93.50
30 4.00 4.14 3.93 3.94 88.74 -0.60 -1.02 -0.76 -0.69 86.73
50 4.06 5.71 5.84 4.23 85.03 -0.11 -0.26 -0.22 -0.01 83.99

5 300 2.22 2.22 2.22 2.22 92.78 -0.43 -0.43 0.00 -0.87 93.04
30 3.69 4.04 3.95 3.61 90.24 -1.31 -1.66 -1.61 -1.10 86.84
50 5.47 6.83 6.13 5.69 87.15 -0.50 -0.70 -0.63 -0.38 85.92

5 400 0.62 -0.62 0.00 -0.62 94.38 0.45 0.45 0.45 0.45 93.18
30 2.79 2.99 2.98 2.81 91.74 -3.01 -2.47 -2.81 -2.72 85.43
50 5.72 6.79 6.45 5.62 88.56 -1.20 -1.47 -0.91 -0.94 86.56

5 500 0.53 0.53 0.53 0.53 93.68 -0.43 0.00 0.00 0.00 93.48
30 2.22 2.30 2.43 2.41 92.04 -2.79 -2.81 -2.72 -2.84 83.35
50 5.61 6.75 6.04 5.29 89.64 -1.38 -1.24 -1.28 -1.33 86.42

Table 1: Differences in hit rates between the different SBM-VARs and the SSVS-VAR.
All results are means over 25 simulations from each DGP. For the SSVS-VAR absolute
hit rates are reported.

The histograms mask differences across different parameters of the DGPs. To

understand under which circumstances our SBMs produce more favorable estimates of

the network, we now zoom into the specific performance for each choice of M,T and

whether the DGP has a network structure or not. All the results are provided in Table

1. The table shows the percentage point differences between the HR of a particular
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SBM-VAR and the SSVS-VAR.

We start our discussion by focusing on the absolute performance of the SSVS-VAR

first. For all combinations of T,M and for clustering and non-clustering DGPs, the SSVS-

VAR produces hit rates well above 80 percent. For small models (M = 5), the model

detects around 90 or more edges correctly. This is not surprising given the fact that the

number of possible edges is 10 and thus potential clusters are (at best) characterized by

including relatively few nodes. When we increase the dimensionality of the model (i.e.

set M ≥ 15), the performance of the SSVS-VAR deteriorates and drops below 90 percent.

Notice that using longer time series (T ≥ 300)) improves network estimation accuracy

across all model sizes.

The SBM-VARs with different priors on the clustering behavior mostly improve upon

the SSVS-VAR if the DGP features clustering. In most cases, differences across priors are

small and within one to two percentage points. When we consider the non-clustered DGP

we find many values below zero. But these are small, suggesting that using the SBM does

not hurt network detection accuracy if no clustering is present.

Zooming into the differences across priors for the non-clustered DGP we find that for

some priors and DGPs, using an SBM produces (almost) the same HRs as in the case of

the correctly-specified SSVS-VAR.

To sum up, our simulations indicate that the choice of the prior on the clustering

process is not critical. Nevertheless, we find that the DP is very often producing the

highest HR for both DGPs.

4 Macroeconomic forecasting using SBM-VARs

The previous section shows that, with artificial data, our model is capable of recovering

the underlying network of shocks accurately. Next, we ask whether explicitly modeling a

network among the shocks also translates into more accurate density forecasts. We do so
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by using the different SBM-VARs to forecast US macroeconomic variables.

4.1 Data and design of the forecasting exercise

We rely on the quarterly version of the McCracken and Ng (2016) database from 1960:Q1

through 2023Q2. We consider h = 1 and h = 4 quarter ahead forecasts, calculated

iteratively. Our forecast evaluation period starts in 1990:Q1.

We consider two model sizes: a medium-sized dataset with M = 10 and a larger one

with M = 19 endogenous variables. Both datasets include a set of three focus variables:

these are the unemployment rate (UNRATE), the GDP growth rate (GDPC1) and CPI

inflation (CPIAUCSL). Then, depending on the dataset we add additional macroeconomic

and financial series. Further information on the actual series included in each model and

how they are transformed are provided in the Data Appendix.

To understand whether the prior on z matters for forecast accuracy, we again consider

all four SBM priors and use the acronym SBM-VAR-X, where X ∈ {GN,DM,DP,PY},

to denote them. We also include the SSVS prior (without a network structure). All

forecasting results are benchmarked against the Bayesian VAR without shrinkage on Ω

(i.e. a model that sets δi,j = 1 ∀i, j). This model is henceforth called the no shrinkage

benchmark or baseline model. Thus we can separate out the gains from using some sort

of SSVS prior shrinkage (by comparing SSVS results to the no shrinkage benchmark)

from the gains from using our specific SSVS network prior (by comparing the SBM-VAR-

X models to SSVS). We stress that all these models share the same prior for the VAR

coefficients and other model parameters and differ only in the prior for Ω.

Forecast accuracy is measured through log predictive likelihoods (LPLs). Since our

goal is to model a network, we do not only focus on the univariate LPLs of the three focus

variables but on joint LPLs. These joint LPLs either measure the joint forecast density

performance for the three focus variables (FOCUS) or for all variables in yt (ALL).

Before we discuss the empirical results, a brief word on how we set up the priors for
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z. Note that the FRED-QD data divides the variables into groups (e.g. employment and

unemployment, housing, etc.) and our data sets choose variables from some groups, but

not others. The hyperparameters on the Gibbs priors are set so that the prior expectation

on the number of groups equals the number of non-empty groups (for a particular model

size). For instance, if the data set only includes labor market indicators and interest rates,

we would tune the prior to expect only two clusters.

4.2 Forecasting results

4.2.1 Overall density forecasting performance

We start by discussing the overall forecast performance of the various VARs first. Table 2

shows the average LPLs of a particular model minus the one of the VAR without shrinkage

on Ω. Positive numbers suggest that our model does better than the benchmark while

negative numbers indicate the opposite. The column associated with ’BASE’ shows the

absolute LPL for the baseline specification.

We start by discussing the one-step-ahead marginal LPLs of the medium-scale VAR

first. For two out of three focus variables (GDPC1 and CPIAUCSL), we find that SBM-

VARs and the SSVS-VAR improve upon the no shrinkage benchmark. In these cases,

differences between the SSVS-VAR (which assumes no network structure in the prior

inclusion probabilities) and the SBMs are muted. In particular, we find that for GDP

growth, all models produce a similar performance, with the SBM-VAR-DM and the SSVS-

VAR producing identical LPL differences. For inflation, a similar pattern arises but here

we find that the SBM-VAR-DP produces slightly more precise density forecasts than

all competing models. Only for the unemployment rate we find that SBM-VAR-GN

produces substantially more precise density forecasts than all other specifications. The

unemployment rate is also the only focus variable where some of the SBM-VARs (and the

SSVS-VAR) perform worse than the no shrinkage benchmark.
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Variable Medium VAR Large VAR
Group GN DM DP PY SSVS BASE GN DM DP PY SSVS BASE

1-quarter ahead

GDPC1 0.11 0.12 0.10 0.11 0.12 3.00 0.06 0.01 0.00 0.03 0.00 2.98
UNRATE 0.24 0.12 -0.08 -0.20 -0.07 -7.62 0.73 -0.56 -0.68 -0.08 -1.57 -7.36
CPIAUCSL 0.11 0.11 0.14 0.08 0.11 3.78 0.03 0.08 0.08 0.08 0.08 3.78

FOCUS 0.73 0.45 0.29 0.16 0.35 -0.87 1.19 -0.12 -0.34 0.40 -1.22 -0.51
ALL 0.99 0.73 0.64 0.47 0.51 -0.29 -3.51 -0.93 -4.12 -4.52

4-quarters ahead

GDPC1 0.04 0.01 0.04 0.06 0.03 2.50 0.00 -0.01 0.01 0.00 0.00 2.57
UNRATE 0.11 0.29 0.10 0.15 -0.01 -6.15 0.53 0.21 0.44 0.44 1.07 -6.52
CPIAUCSL 0.12 0.09 0.11 0.11 0.08 3.54 0.16 0.10 0.14 0.13 0.14 3.49

FOCUS 0.37 0.52 0.34 0.38 0.18 0.92 0.85 0.52 0.80 0.74 1.52 0.36
ALL 0.58 0.63 0.63 0.63 0.38 2.42 2.45 3.53 2.81 1.91

Table 2: Joint LPL scores across different variable groups of the medium-sized and large
VARs relative to the baseline model with no shrinkage. Scores of the baseline are in
absolute terms.

For the large model, a similar story arises. We find small gains for output and inflation.

These, however, appear to be more pronounced when compared to the SSVS-VAR. For

unemployment, we find that the only model that improves upon the no shrinkage VAR

is the SBM-VAR-GN with all other specifications performing worse than the benchmark.

Comparing the marginal LPLs for the medium and large baseline model shows almost no

differences.

Intuitively, if our focus is on the marginal LPL for an individual variable, then the only

way the SBM-VARs can show performance gains relative to SSVS is if they are better

at modeling the contemporaneous spillovers between variables. Thus, it is unsurprising

there are only small differences in marginal LPLs. Joint LPLs should profit even more

given that they depend on the full predictive covariance matrix Σt+h.

To back this claim, we start by discussing the joint LPL over the three focus variables.

For the medium model, we find gains vis-á-vis the benchmark that are more sizable than

the ones for any of the three focus variables. Again, the best performing specification is

23



the SBM-VAR-GN with SBM-VAR-DM being second. In most cases (except for SBM-

VAR-PY) we find that using the SBM to model Ω pays off if the target is the joint

density of the three focus series. When we consider the larger models we find a somewhat

different story. In this case, two out of four SBMs lose against the benchmark. But we

also find that SBM-VAR-GN, again, substantially improves upon the benchmark and all

other specifications (in particular the SSVS-VAR). This has to be considered in light of

the absolute LPLs for the focus variables of the baseline model. Since these are slightly

higher than the ones of the medium-scale VAR without shrinkage, we can say that if the

researcher wishes to produce the most precise density forecasts for all three focus variables

jointly, the single best performing specification is SBM-VAR-GN.

Next, we consider the joint performance for all series in yt. If all series are considered, a

similar pattern to the one based on the joint LPLs over the focus variables arises. With the

medium-sized data set, we find gains with respect to the benchmark with SBM-VAR-GN

producing the most precise joint density predictions. For the large data set, interestingly,

none of the models that induce shrinkage on Ω manages to outperform the no shrinkage

benchmark. In this case, the SBM-VAR-GN produces similar density predictions (which

are, nevertheless, slightly worse than the ones of the benchmark).

Focusing on the one-year-ahead forecast distributions, a similar picture to the one-step-

ahead horizon emerges. For marginals, the gains are rather small for output and inflation

whereas they appear to be more substantial for the unemployment rate. This pattern

holds for both model sizes. When we consider the LPLs over the focus series we again

find SBM-VAR-GN to produce a strong performance, improving upon the benchmark and

the SSVS-VAR. Notice, however, that the other priors perform slightly better. But these

differences are muted. This also holds for the joint LPLs and when the medium-scale

dataset is considered.

For the large dataset, however, we find a different picture to the one observed for the

one-quarter-ahead forecasts. In this case, we find that SBM-based models yield LPLs that
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Figure 4: Recursive mean of joint differences in one-quarter ahead LPLS scores relative to
a VAR with a diffuse prior on the precision matrix. Shaded areas denote NBER reference
recessions.

are appreciably larger than the ones of the benchmark and the SBM-VAR-DP produces

the most accurate density forecasts.

4.2.2 Density forecast performance over time

At this point, we have discussed only average forecast performance over all periods in the

hold out. To better understand why particular models are doing well we turn to analyzing

the forecasting performance over time.

We do so in Figure 4. This figure shows differences in recursive means between the

different VARs that induce shrinkage on Ω and the no shrinkage benchmark. At each

point in time, a number greater than zero implies that a particular model has been
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outperforming the benchmark up to this point. For brevity, we focus on the joint density

over the focus variables and the joint density over all elements in yt only.

Figure 4 strikingly shows that using models that induce shrinkage on Ω helps forecast

performance during volatile periods such as the global financial crisis or the pandemic.

During both recessions, our models improve appreciably over the benchmark specification.

In tranquil periods, this effect is much less pronounced and we even find that after the

financial crisis, the relative differences somewhat decline up until 2020:Q1.

This general pattern holds for both datasets and if we consider LPLs over the focus

series and over all variables in the system. Notice, however, that the evolution of the

relative LPLs is very similar for panels (a) and (b) for the medium data set, but differences

are much larger if we compare panels (a) and (b) for the large dataset. In this case, two of

the four SBM models (GN, DP) and the SSVS-VAR perform poorly during the pandemic

(see panel (a)) but all of them fail to improve upon the benchmark if we consider joint

LPLs over all variables in the system.

This discussion (and the discussion in the previous section) shows that our SBM-VARs

are capable of improving upon the model that induces no shrinkage on Ω and the VAR

which assumes that the prior inclusion probabilities are fixed and independent from each

other. Within the class of SBM-VARs, we find that SBM-VAR-GN does best for the

one-step-ahead horizon while SBM-VAR-DP works best for four-quarter-ahead forecasts.

In most cases, however, differences across the priors on z are rather small.

4.3 Inspecting network properties

In this section, we investigate the properties of the estimated networks of the SBM-

VARs with the GN and DP priors and the SSVS-VAR. Our focus on SBM-BVAR-GN

and SBM-BVAR-DP is predicated on their strong performance for one and four-step-

ahead predictive likelihoods, respectively. We analyze the networks by considering a set

of summary statistics related to the network structure. These are computed recursively
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over the hold-out period. For brevity, we focus on the medium-scale model.

We consider three different summary statistics:

1. Number of groups. This measures the number of groupsH detected by the SBM over

the hold-out period. As a point estimate ofH, we use the clustering which minimizes

the posterior expectation of the variance of information loss function. Wade and

Ghahramani (2018) discuss the advantageous properties of this approach.

2. Average degree. The degree for each node i is the number of edges between i and

all other nodes:

di =
∑
j ̸=i

δi,j.

The average degree is given by: d̄ = 1/M
∑M

i=1 di. The average degree measures the

average number of links of a particular node to the other nodes in the network.

3. Modularity. Modularity is a measure of how strongly separated from one another

the different clusters are. It is defined as:

Q =
1

2N

∑
i,j

(
δi,j −

didj
N

)
1(zi = zj),

where N is the overall number of edges and 1(zi = zj) is the indicator function that

takes on value 1 if nodes i and j are in the same groups, that is if zi = zj. If Q is

large, most edges in the network are within a particular cluster whereas if Q is low,

the community structure is weak and the edges are distributed uniformly over the

network.

Figure 5 shows how these network summary metrics evolve over the hold-out period.

We start by discussing how the number of groups evolves over time. Panel 5a suggests

that the model with the GN prior produces only a single cluster up until around 2012.

Afterwards, the number of clusters fluctuates between one and two. By contrast, when we
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Figure 5: Network summary statistics over the holdout period. Dark blue is the SBM-
GN prior, light blue the SBM-DP and red the SSVS prior. Shaded areas denote NBER
reference recessions.

consider the DP prior, which favors more dispersed partitions and tends to open up new

clusters more quickly than the GN prior, the figure suggests two clusters throughout. The

first cluster is comprised of price series and short-term interest rates whereas the second

cluster consists of the remaining series in the system.

Next, we consider network modularity, displayed in panel 5b. Again, considering the

GN prior first shows that modularity increases in lockstep with the number of groups. It is

noteworthy that modularity is appreciably lower in 2012 compared to the instances where

the number of groups reach two in the later part of the hold-out period. This indicates

that the structure of the groups has changed in the sense that community structure has

been weaker in 2012 so that shocks within a group had a tendency to form more ties

to shocks in the other group whereas for the cases where find two regimes later in the
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sample the connections have been strong within a particular group but less so between

the two groups. Under the DP prior, we find that during the 1990s up until the burst of

the dotcom bubble modularity is higher and decreases in the period between the dotcom

crisis and the global financial crisis. During and after the financial crisis we find that

cross-group relations become stronger.

Finally, we consider the average degree over time. This is shown in panel 5c. We find

that the network implied under the standard SSVS prior tends to be more dense than

under the two SBM-type priors. For all three models, we observe that the degree is higher

in the first third of the hold-out, before declining slightly during the early 2000s up to the

financial crisis. In the aftermath of the financial crisis up to the pandemic the implied

networks across all three priors tend to become more dense. This is particularly visible

for the SSVS-VAR which gives rise to a rather dense Ω matrix.

5 Conclusions

Prior information can be important to ensure shrinkage and parsimony in large VARs.

A substantial Bayesian VAR literature has developed proposing various priors, but few

of them focus on the high-dimensional error covariance matrix. In this paper we develop

such a prior based on the idea that the error precision matrix is likely to exhibit a

parsimonious network structure. It does so by using an SSVS prior (to select the

parsimonious specification) with a SBM (which ensures the specifications involve

networks). We also develop a computationally efficient Bayesian MCMC algorithm

which jointly estimates the number of clusters and the members in each cluster.

In simulated data we find that this algorithm does a fine job of uncovering the network

structure whereas a standard SSVS prior, designed to ensure parsimony but not involving

a network structure, does not perform as well. This ability to find a parsimonious network

in a high dimensional error precision matrix is also found in our forecasting exercise
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involving US macroeconomic data. In particular, we find a small number of clusters with

sensible interpretations (e.g. grouping price and interest rate variables in one cluster and

the remaining variables reflecting the real economy in another) but noticeable variation

over time both in the membership of each cluster and in the strength of the links between

members. Our forecasting exercise shows that the use of our SBM prior typically leads to

some modest improvements over both an SSVS prior which ignores the network structure

and a non-informative prior.

As possible avenues for further research we stress that our model is very general and

can be applied in combination with any specification for the conditional mean. Moreover,

the information we back out on the network can be used to inform shrinkage priors on

the lagged coefficients as well.

From an applied perspective, we illustrate our approach using US macroeconomic

data. But in principle, we can use our framework to model financial time series such as

stock returns which display a more pronounced clustering or herding behavior (see, e.g.

Tsionas et al., 2022, for a multivariate SV model that dynamically clusters series so that

they exhibit herding/non-herding behavior).

30



References

Daniel Felix Ahelegbey, Monica Billio, and Roberto Casarin. Sparse graphical vector

autoregression: A bayesian approach. Annals of Economics and Statistics, (123/124):

333–361, 2016a. doi: https://doi.org/10.15609/annaeconstat2009.123-124.0333.

Daniel Felix Ahelegbey, Monica Billio, and Roberto Casarin. Bayesian graphical nodels

for structural vector autoregressive processes. Journal of Applied Econometrics, 31(2):

357–386, 2016b. doi: https://doi.org/10.1002/jae.2443.

Ilya Archakov and Peter Reinhard Hansen. A new parametrization of correlation matrices.

Econometrica, 89(4):1699–1715, 2021. doi: https://doi.org/10.3982/ECTA16910.

Jonas E. Arias, Juan F. Rubio-Ramı́rez, and Minchul Shin. Macroeconomic forecasting

and variable ordering in multivariate stochastic volatility models. Journal of

Econometrics, 235(2):1054–1086, 2023. doi: https://doi.org/10.1016/j.jeconom.2022.

04.013.

Yu Bai, Andrea Carriero, Todd E. Clark, and Massimiliano Marcellino. Macroeconomic

forecasting in a multi-country context. Journal of Applied Econometrics, 37(6):1230–

1255, 2022. doi: https://doi.org/10.1002/jae.2923.
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A Full Conditional Posterior Distributions

Sampling from p(a|ξ, {dt}Tt=1,Ω,Y ). We let xt = (yt−1, . . . ,yt−P ) and stack the lagged

observations over time to arrive at the T × (M P )-dimensional matrix X = (x1, . . . ,xT )
′.

Furthermore, B0 is the lower-Cholesky factor of Ω and D̃ = (d1, . . . ,dT )
′ a T × M -

matrix containing the sequence of time-varying observation error volatilities. Carriero

et al. (2022) show that conditional on knowing B0 and D̃ it is possible to factorize

the model such that the VAR coefficients can be estimated equation-by-equation. In

particular, for the jth equation (j = 1, . . . ,M) let:

Y (j) = vec((Y −XA[j=0])B′
(0,j:M,•))./vec(D̃

0.5
•,j:M),

X(j) = (B(0,j:M,j) ⊗X)./vec(D̃0.5
•,j:M),

where A[j=0] refers to a modified version of A where the j-th column is set equal to zero.

The sub-matrix containing the rows with indices j trough M of B0 is denoted as B0,j:M,•

and the vector B0,j:M,j contains the elements j to M of the j-th column of B0. Similarly,

D̃0.5
•,j:M are the columns j through M of D̃0.5. The symbol ./ indicates element-by-element

division. Rewriting the variables in such a way, the moments of the conditional posterior

arise from the standard Gaussian regression model:

V a,j = (V −1
a,j +X(j)′X(j))−1,

aj,• = V̄a,j(V
−1
a,j aj,• +X(j)′Y (j)),

where V a,j denotes the prior variance (determined by the elements of ξ) and aj,• the prior

mean. For the simulations and empirical application we use a prior centered around zero.

Sampling from p(ξ|a). Recall that a = vec(A1, . . . ,Ap). The prior variance of each

generic element aj (j = 1, . . . ,M2P ), is given by the product of a local, variable-specific

component c2j and a global, shared component d2. Makalic and Schmidt (2016) develop
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a simple sampling scheme for the case of the horseshoe prior involving two auxiliary

variabels νj and ζ. The conditional posterior of c2j and d2 takes the form:

c2j |• ∼ InvGa
(
1,

1

νj
+

a2j
2d2

)
,

d2|• ∼ InvGa
(M2P + 1

2
,
1

ζ
+

1

2

M2P∑
j=1

a2j
c2j

)
.

The auxiliary variables are in turn sampled from:

νj|• ∼ InvGa
(
1, 1 +

1

c2j

)
,

ζ|• ∼ InvGa
(
1, 1 +

1

d2

)
.

Sampling from p({τ 2i,j}i,j|{dt}Tt=1),Ω,∆). Following Ishwaran and Rao (2005) we

update the prior variances of the off-diagonal elements of the symmetric precision

matrix τ 2ij = τ 2ji (i = 1, . . . ,M ; j = 1, . . . , i − 1) by drawing from an inverse gamma

distribution. The conditional posterior is given by:

τ 2i,j ∼ G −1
(
aτ +

1

2
, bτ +

ω2
i,j

δi,j + (1− δi,j)c

)
.

Sampling from p(Π, z|∆). Conditional on the adjacency matrix ∆ we employ the

sampling algorithm by Legramanti et al. (2022) to obtain a draw for the estimated group

membership. For each node j = 1, . . . ,M it performs the following steps:

1. Remove j from the network.

2. Check whether group zj which previously included j is now empty. If necessary,

eliminate it and relabel all cluster indicators such that each cluster h = 1, . . . , H

contains at least one node.
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3. Sample zj from the conditional posterior:

p(zj = h|z−j,∆) ∝


WM,H−(n−

h − σ)
∏H−

k=1

B(aπ+m−
hk+rjk,bπ+m̄−

hk+r̄jk)

B(aπ+m−
hk,bπ+m̄−

hk)
for h ≤ H−,

WM,H−+1

∏H−

k=1
B(aπ+rjk,bπ+r̄jk)

B(aπ ,bπ)
for h = H− + 1,

where z−j are the cluster membership indicators, nh is the size of cluster h,m
−
hk(m̄

−
hk)

are the number of links (non-existing links) between clusters h and k and H− is the

number of non-empty clusters, all after removing j. We denote the number of links

(non-existing links) between node j and the k-th cluster as rjk(r̄jk). WM,H− and

WM,H−+1 are weights and σ is a discounting factor that controls how quickly the

sampler opens up a new cluster. All of the latter are determined by the specification

of the Gibbs-type prior.

B Data Appendix

An overview of the variables used in both models and their transformations can be found

in table 3.
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FRED Code Variable Name tcode Group Medium Large

GDPC1 Real Gross Domestic Product 5 NIPA x x
PCECC96 Real Personal Consumption Expenditures 5 NIPA x x
GPDIC1 Real Private Domestic Investment 5 NIPA x x
PRFIx Real Private Fixed Investment 5 NIPA x x

INDPRO Industrial Production Index 5 IP x
CUMFNS Capacity Utilization: Manufacturing 2 IP x
UNRATE Civilian Unemployment Rate 2 Labor Market x x
SRVPRD All Employees: Services 5 Labor Market x
CE16OV Civilian Employment Level 5 Labor Market x
AWHMAN Avg Weekly Hours of Production & Nonsupervisory 1 Labor Market x

Employees: Manufacturing
CES3000000008x Avg Hourly Earnings : Manufacturing 5 Earnings x x

CPIAUCSL Consumer Price Index for All Urban Consumers: 6 Prices x x
All Items

PCECTPI Personal Consumption Expenditures: Chain-type 6 Prices x x
Price Index

GDPCTPI Gross Domestic Product: Chain-type Price Index 6 Prices x
GPDICTPI Gross Private Domestic Investment: Chain-type 6 Prices x

Price Index
FEDFUNDS Effective Federal Funds Rate 2 Interest Rates x

GS1 1-Year Treasury Rate 2 Interest rates x
BAA10YM Moody’s Seasoned Baa Corporate Bond Yield 2 Interest Rates x

Rel. to 10-Year Treasury Constant Maturity
M2REAL Real M2 Money Stock 5 Money & Credit x
S&P 500 S&P 500 Index 5 Stock Market x x

Table 3: Macroeconomic variables alongside their assigned groups (as per McCracken and Ng (2016)) and their FRED identifier
and tcode. tcode refers to the following transformations: 1) None 2) ∆xt 5) ∆log(xt) 6) ∆

2log(xt)
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