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1 Introduction

The accuracy in predicting GDP growth hinges critically on the statistical characterization of

non-linearities inherent in its behaviour (DeJong, Liesenfeld, and Richard, 2005). Although linear

models might be useful for forecasting GDP growth, they neglect that macroeconomic variables

often behave differently according to fundamental changes in economic policy-making, or more

generally, according to the business cycle phase the economy is in. Hence linear models might

not reflect well the present situation. An illustrative example of such a fundamental economic

policy realignment is the change in monetary policy performed by the Swiss National Bank

(SNB) between 2011 and 2015.1 Such kind of events add to the complexity of forecasting GDP

growth and of assessing the current economic state in an already uncertain environment. In this

context, policy realignments represent a particular form of non-linearity.

The objective of the present work is to construct a model which jointly allows for (i) assessing

the business cycle stance, (ii) detecting business cycle turning points, and (iii) predicting GDP

growth. Linear dynamic factor models (DFM) – pioneered by the work of Stock and Warson

(1992) – have proven to be promising in achieving at least a subset of these goals. Following

Mariano and Murasawa (2003), linear DFMs can handle indicators of quarterly and monthly

frequency, ragged edges and missing observations, rendering them particularly well suited in

monitoring day-to-day economic activity.2 Concerning the forecasting performance, this class

of models outperforms alternative standard univariate models as well as institutional forecasts

based on expert judgement.3 A shortcoming of linear DFMs is, however, their disability to

provide information on the business cycle stance of an economy.

The introduction of a non-linear Markov-switching element fills this gap, as it allows for a

probabilistic evaluation of an economy’s position in the business cycle. Therefore, the Markov-

switching dynamic factor model (MS-DFM) brought forward by Kim (1994), Kim and Yoo (1995),

Diebold and Rudebusch (1996) and Chauvet (1998) is used as a starting point of our analysis.

They proposed a fully non-linear DFM in which the common component is governed by an

unobservable regime-switching variable controlling the business cycle dynamics.4 The MS-DFM

provides information on an economy’s current position in the business cycle and can be used for

now- and forecasting in a context in which non-linearities are allowed for explicitly. Camacho,

Perez-Quiros, and Poncela (2018) account for the possibility of mixed-frequencies and ragged

edges by integrating the methodology of Mariano and Murasawa (2003). By means of Monte-

Carlo analysis they find substantial increases in the accuracy of business cycle identification

compared to traditionally used MS-DFMs with balanced data. A number of studies assign only

1To the surprise of markets and institutions, the Swiss National Bank (SNB) decided for a discontinuation of
the Euro-Swiss Franc (CHF) on January 15, 2015, which had been introduced on September 6, 2011.

2Applications of such linear models to countries include for instance Argentina, Canada, Czech Republic,
Spain, Switzerland, etc. (Chernis and Sekkel, 2017; Camacho and Perez-Quiros, 2011; Camacho, Dal Bianco, and
Martinez-Martin, 2015; Rusnák, 2016; Marcellino, Porqueddu, and Venditti, 2016; Galli, 2018).

3See for instance Giannone, Reichlin, and Small (2008), Rünstler, Barhoumi, Benk, Cristadoro, Reijer, Jakai-
tiene, Jelonek, Rua, Ruth, and Nieuwenhuyze (2009), Barhoumi, Darné, and Ferrara (2010), Marcellino and
Schumacher (2010), Bańbura and Rünstler (2011), Aastveit and Trovik (2012), and D’Agostino, McQuinn, and
O’Brien (2012); see Bańbura, Giannone, and Reichlin (2010) for a review.

4Camacho, Perez-Quiros, and Poncela (2015) show that this one-step estimation outperforms the estimation
of a Markov-switching process on the factor in a second step.
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a subordinate role to parametric non-linear models in macroeconomic forecasting.5 Calhoun and

Elliott (2012) identify a wrong choice of non-linearity for the weak out-of-sample forecasting

performance of such models. In general, more complicated models tend to have a good in-

sample fit, better than linear specifications, because of their greater flexibility. Yet, often the

resulting models are too specific for the particular estimation sample, and their good in-sample

performance is not replicated in an out-of-sample forecasting context.6

We propose a small-scale Markov-switching dynamic factor model applied to the Swiss econ-

omy. The application to the Swiss economy is interesting for various reasons. Specific to this

country are the fundamental monetary policy realignments of 2011 and 2015 in an environment of

increased macroeconomic uncertainty linked to the European debt crisis as well as several years

of economic struggle in the 1990s caused by a crashing real estate market. Besides, the global

financial crisis of 2008-09 lead to the greatest decline in quarterly GDP growth in three decades.

These events render the country an illustrative example for potential non-linearities in the data.

Further, contrary to survey indicators, published quarter-over-quarter (q-o-q) GDP growth rates

of the Swiss economy show a rather low degree of persistence. As a consequence, a simple

auto-regressive lag-structure for a factor extracted jointly from these data seems less promising.

The Swiss case is also particular regarding data availability, as high-frequency business cycle

indicators are available only to a limited extent.

Related literature for Switzerland is scarce. Galli (2018) constructs a business cycle index

for the Swiss economy based on a broad set of indicators. While the resulting coincident index

provides useful information on business cycle turning points, it does not provide inference on the

particular business cycle stance. The same index is included in Galli, Hepenstrick, and Scheufele

(2017), who perform a horse race of forecasting models. Among others, they also consider a

small-scale linear DFM as competing model. In contrast to their analysis, we provide more

transparency concerning the process of selecting the indicators. Moreover we include real-time

GDP data to our model and compare the forecasting accuracy to alternative models containing

the same set of indicators as well as to judgemental and consensus forecasts.

We follow the lines of Camacho, Perez-Quiros, and Poncela (2018) and extend their work

in several directions. First, rather than focusing on a stylized experiment, we pay particular

attention to the process of variable selection. According to Bai and Ng (2008), Bańbura, Gian-

none, and Reichlin (2010) and Camacho and Garcia-Serrador (2014) small-scale DFMs are well

suited for now- and forecasting, especially when the indicators used are selected appropriately.

By means of a combinatorial algorithm, we focus on a model specification with a limited number

of indicators only. This algorithm serves to assess the contribution of an additional variable,

taking into account different variable combinations. Second, we incorporate explicitly revisions

to GDP and allow thereby to predict both the first and final release of our target variable. The

final -model builds upon a single factor, extracted from a set of ten indicators and real GDP

growth. Following Mariano and Murasawa (2003), the model deals easily with (i) ragged edges,

occurring from a non-synchronous release of official data, and (ii) mixed frequencies of the indi-

cators. We allow for both linear and non-linear elements – the dynamics within a particular state

5See for instance Faust and Wright (2013), Umer, Sevil, and Sevil (2018), among others.
6See for instance Stock and Watson (1999).
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are characterized by a linear specification, whereas the switch across states depicts a non-linear

element. The regime switch is specified by a two-state Markov chain whose two states capture

expansionary and contractionary episodes.7 Last, we test the model’s performance in now- and

forecasting against a set of competing models.

As regards the results, we find that the MS-DFM is able to capture past recessionary episodes

of the Swiss economy surprisingly well. We compare the resulting recession probabilities of

our model to both the business cycle dating of the Economic Cycle Research Institute (ECRI)

and a technical recession classification. For either case, the recession probabilities spike at the

beginning of a recessionary episode, or even prior to the actual beginning of a recession. The

model estimates highlight the importance of taking non-linearities into account. The estimated

Markov-switching parameters are all statistically different from zero. The expected duration of

an expansion is around 50 months and that of a contraction is around 7 months; the average

q-o-q growth rate of GDP in these states is around 0.6 %, and -1.0 %, respectively. Furthermore,

the extracted business cycle factor tracks the business cycle dynamics accurately and is able to

explain 74 % of the variation of Swiss GDP growth in real-time. It can be regarded a trustworthy

indicator of Swiss economic developments over the last three decades.

In an out-of-sample exercise, we use real-time data from Indergand and Leist (2014) to

construct 312 bi-weekly vintages starting in January 2004. We accurately account for the lag

of synchronicity in data publication as observed in the real-time data flow. We show that our

model was particularly well-suited in determining turning points of the Swiss business cycle and

to timely assess recessionary episodes in real-time. During the outbreak of the global financial

crisis of 2008-09, the model predicted a negative GDP growth rate for the fourth quarter 2008

already in August of that year. Moreover, the model correctly anticipated the negative GDP

growth of the first quarter 2015 by the end of the first half of February, i.e., only one month after

the removal of the Swiss Franc lower bound. The now- and forecasting performance of our model

is not just more accurate in comparison to naive models; indeed, the forecasting performance

of the MS-DFM turns out to be as good as peers that allow for richer dynamics. For instance,

its forecasts are significantly more accurate than those of a Mixed Frequency-Factor Augmented

Vector Autoregressive (MF-FAVAR) model. The results prove to be robust for different model

specifications. For instance, adding more indicators to our model not necessarily improves the

forecasting performance nor its ability in detecting recessionary episodes.

The paper is organized as follows: Section 2 outlines the econometric framework of the MS-

DFM and motivates alternative model specifications. We describe the selection of indicators in

Section 3. Section 4 presents the empirical evidence, first discussing the In-sample-properties,

and second reporting the Out-of-sample performance. We check for robustness of our findings in

Section 5. Section 6 concludes.

7Alternatively, one could also consider three states as for instance in Carstensen, Heinrich, Reif, and Wolters
(2017), who distinguish between normal and severe recessions in an application to the German economy.
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2 The econometric framework

In this section we describe the details of the dynamic factor model including the Markov-switching

process for the factor. The main challenge hereby consists of finding an appropriate framework

which takes the following into account: (1) the data displays different sampling frequencies (i.e.

monthly business cycle indicators and quarterly National Accounts data); (2) the GDP data

is subject to substantial revisions; (3) the data contains missing observations. The outline of

the model closely follows the work of Camacho, Perez-Quiros, and Poncela (2018) and incorpo-

rates some ingredients of Camacho and Perez-Quiros (2010), Mariano and Murasawa (2003) and

Chauvet (1998).

2.1 Mixing quarterly and monthly observations

Combining monthly observations with quarterly data requires to express the quarterly data as a

function of monthly figures. Following Mariano and Murasawa (2003), if the sample mean of the

three within quarter monthly observations can be approximated by the geometric mean, then

the quarterly growth rates can be decomposed as weighted averages of monthly growth rates.8

Let yqt be the quarter-over-quarter growth rate of an observed quarterly indicator and ymt its

latent month-over-month growth rate. Then, yqt , can be expressed as the weighted average of

month-on-month growth rates by

yqt =
1

3
ymt +

2

3
ymt−1 + ymt−2 +

2

3
ymt−3 +

1

3
ymt−4. (1)

2.2 Accounting for GDP-revisions

A key drawback of simple ARIMA-models in forecasting is their high sensitivity to data revisions.

Instead, the present model directly takes into account revisions to GDP. We get vintage GDP

data from Indergand and Leist (2014), starting in 2002-Q3. The first quarterly estimate of real

GDP growth is denoted by y1stt , while the latest available vintage – final GDP – is called yft .9 We

follow the recommendations of Aruoba (2008) to test whether revisions to Swiss quarterly GDP

growth are news or noise. In the former, the initial announcement is an efficient forecast for

final GDP, reflecting all available information; revisions then only incorporate new information.

In the latter, the initial announcement is an observation of the final series, measured with error.

The test results yield the following: The mean of revisions is not significantly different from

zero; revisions are positively correlated with final estimates, but uncorrelated with initial esti-

mates. For the forecast efficiency test on the regression y1stt = α0 + α1y
f
t + ǫt, the joint null

hypothesis of α0 = 0 and α1 = 1 is rejected with a p-value of 0.001; contrary, the same null

8Since the evolution of macroeconomic series is smooth enough, such an approximation is appropriate. For
instance, Proietti and Moauro (2006) avoid this approximation at the cost of moving to a complicated non-linear
state-space model.

9In Switzerland, two distinct authorities are responsible for quarterly and yearly GDP estimates. Based on the
yearly GDP measures from the Federal Statics Office (FSO), the State Secretariat of Economic Affairs (SECO)
uses temporal disaggregation methods to estimate quarterly GDP figures, which are published periodically about
65 days after the end of a quarter. Revisions to the real-time measure from SECO can stem from different sources:
(1) revisions to quarterly indicators; (2) revisions to annual base data; (3) changes in the methodology of national
accounts (benchmark revisions); (4) minor changes in the quarterly estimation methods; (5) technical reasons like
changes in seasonal adjustment.
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hypothesis cannot be rejected for the regression yft = α0+α1y
1st
t + ǫt. Summarized, these results

indicate that revisions are news, rather than noise.10

According to Mankiw and Shapiro (1986), this finding motivates to link the first estimates

to the final GDP growth rates by

yft = y1stt + ǫt, ǫt ∼ NID(0, σ2
ǫ ). (2)

2.3 Model specification

The premise of dynamic factors models is that a vector of observed time series Xt of dimension

nX can be decomposed into two orthogonal components: common components, also called latent

factors, denoted by ft, which capture the co-movements among the observed variables in Xt and

an idiosyncratic component ut,i, ∀ i = 1, ..., n. These idiosyncratic disturbances arise from

measurement error and from special features of the data.

The vector of time series Xt consists of various different business cycle indicators. A key

feature of these time series is that they describe the economic conditions prevailing at time t0 in

relation to some point in time in the recent past. In most cases this is either the previous month

(t0 − 1) or at times it can be the same month of the last year (t0 − 11). Hence monthly business

cycle variables either describe month-over-month patterns or on the other hand, year-over-year

patterns on a monthly frequency. The econometric specification for the construction of the latent

factor ft has to take these peculiarities into account. In order to simplify the exposition, assume

that all variables in Xt are observed at a monthly frequency. We construct the latent factor

such that monthly growth rates of quarterly series and monthly growth rates of indicators of real

economic activity (hard) exhibit a direct relation with the common factor ft. The corresponding

factor loadings measure the sensitivity of each hard indicator to movements in the latent factor

directly.11

In contrast to hard indicators, the relation between the common factor and survey indicators

(soft) has to be treated differently. Camacho and Perez-Quiros (2010) acknowledge, among oth-

ers, that each confidence indicator is calculated as the simple arithmetic average of the balances

of answers to specific questions chosen from the full set of questions in each individual survey.

The selection of questions is guided by the aim of achieving an as high as possible coincident

correlation of the confidence indicator with the reference series, such as year-over-year growth in

GDP. This implies that the business cycle conditions prevailing at time t0 are compared to the

ones of the same month of the previous year. In order to account for this, we relate the level of

soft indicators where necessary with the year-on-year common growth rate which can be written

as the sum of current values of the common factor and its last eleven lagged values.

For this reason we decompose the variables in Xt into a set of nh hard indicators xh
t and ns soft

indicators in xs
t . Additionally, the vector of observed time series includes first and final estimates

of the quarterly GDP growth rate: Xt =
[(
xh
t

)′
, (xs

t )
′ , y1stt , yft

]′
. We standardize the observed

10We start the revision analysis for the vintage 2004-Q1 up to the final vintage 2016-Q4. Our results are
qualitatively robust for using different vintages of yf

t .
11The terminology as regards soft vs. hard indicators is not necessarily restricted to truly soft or hard indicators.

In fact, if a hard indicator, as for instance industrial production, were to be used in the model as year-over-year
growth rate, then this transformed variable would have to be treated in the model as a soft indicator.
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time series in Xt prior to using them in the dynamic factor model. Let uht,i, ∀ i = 1, ..., nh be the

idiosyncratic (dynamic) error term for the hard indicators, ust,i, ∀ i = 1, ..., ns the equivalent for

the soft indicators, and ut,q the idiosyncratic error term for the two measures of GDP growth.

The dynamic factor model can be specified ∀ t = 1, ..., T as follows:

System of static equations

(
xs
t

xh
t

)

=

(
γs ·

∑11
j=0 ft−j

γh · ft

)

+

(
us
t

uh
t

)

, (3)

(

yft
y1stt

)

=

(
ω(L)
ω(L)

)

· [γqft + ut,q] +

(
0
ǫt

)

, (4)

where uh
t =

(
uht,1, ..., u

h
t,nh

)′
, us

t =
(
ust,1, ..., u

s
t,ns

)′
with n = nh + ns, nX = n + 2, and ω(L) :=

1
3 + 2

3 · L + L2 + 2
3 · L3 + 1

3 · L4, where L is the lag operator. The stochastic properties of ǫt

are defined in equation (2). The vector of factor loadings γ = (γq,γ
′
h,γ

′
s)

′ captures the relation

between the latent factor ft and the observed variables Xt modified by the scalar ω. This takes

into account that y1stt and yft are not observed on a monthly basis and are hence interpolated

using the relation given in equation (1).

System of dynamic equations

ft = µ(ζt) + νft , (5)

(1− φq(L)) · ut,q = νqt with νqt ∼ NID
(
0, σ2

q

)
, (6)

(I −Φu(L))

(
us
t

uh
t

)

= νt, (7)

(

νft
νt

)

∼ NID

(

0,

[
σ2
f 0

0 Σν

])

, (8)

where φq(L) and Φu(l) are in each case second-order lag-polynomials.12 We assume that Φu(L)

and Σν are diagonal, implying that all covariances are zero by construction. For identification

reasons we impose that σ2
f is unity.

Markov-switching factor

The dynamic behavior of the latent factor ft is governed by an unobserved regime-switching

state variable ζt which follows a two-state Markov-chain whose transition probabilities are given

by:

p(ζt = i|ζt−1 = j, ζt−2 = h, ...) = p(ζt = i|ζt−1 = j) = pij . (9)

The state variable ζt interacts with the common factor according to equation (5). Knowledge of

ζt characterizes the population parameter µ(ζt), though it still leaves some uncertainty about the

common factor that comes from the shock νft .13 The non-linearity of the observed time series is

12The AR(2) assumption can be considered as a parsimonious specification: (1) It only requires the estimation
of two parameters; (2) it allows a rich dynamic pattern since the roots of φq(L) and Φu(L) can be complex.

13We omitted autoregressive terms in equation (5) as they turned out to be not significantly different from zero.
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captured by µ(ζt), which is allowed to change across the two distinct states. We define two states

at time t: expansion (ζt = 0) and recession (ζt = 1). Further technical details can be found in

an Appendix and in Camacho, Perez-Quiros, and Poncela (2018).

2.4 Estimation

As regards the estimation of the Markov-switching dynamic factor model (MS-DFM), we follow

Camacho, Perez-Quiros, and Poncela (2018). The idea is to work with the highest frequency of

the data. Those series, which are, however, available only at a lower frequency, are treated as

time series with periodically missing observations. The models are then cast into a state-space

representation and estimated using the Kalman filter; within this approach unobserved cells in

the time series can be treated as missing observations and the maximum likelihood estimation

remains valid. The above system of static and dynamic equations extended with a Markov-

switching element can be cast into the state-space representation as follows:

yt = Hst +wt, (10)

st = µ(ζt) + Fst−1 + vt, (11)

We provide details of the matrices H, F , R, Q, the vectors yt, st, wt and vt and their relation

to the equation system of the models in an Appendix.

If all series in the model were observable at a monthly frequency and the data panel was

balanced, then the estimation of the dynamic factor model could be implemented using standard

maximum likelihood methods in conjunction with the Kalman filter. This assumption is, however,

rather unrealistic, since in our empirical application we have to deal with mixing quarterly and

monthly frequencies and with time series which are published at different time lags and which

start at different points in time. Moreover, our context requires projections of the indicators,

which can be considered as missing data for a certain date as well.

According to Mariano and Murasawa (2003), with the subtle transformation of replacing

missing observations by random draws rt ∼ NID(0, σ2
r ), the system of equations remains valid.14

Importantly, if the distribution of rt does not depend on the parameter space that characterizes

the Kalman filter, then the matrices in the state-space representation are conformable and do

not have an impact on the model estimation since the missing observations just add a constant

term in the likelihood function to be estimated.

Let yi,t be the ith element of vector yt and let Rii be its variance. Let Hi,t be the ith row

of matrix Ht, which has z columns. The measurement equation can then be replaced by the

following expressions

y∗i,t =

{

yi,t if yi,t is observable

rt otherwise,
(12)

H∗
i,t =

{

Hi if yi,t is observable

01×z otherwise,
(13)

w∗
i,t =

{

0 if yi,t is observable

rt otherwise,
(14)

14Means, medians or zeros are valid alternatives.
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R∗
ii,t =

{

0 if yi,t is observable

σ2
r otherwise.

(15)

With this transformation the time-varying state-space model can be treated as having no missing

observations and the Kalman filter can be directly applied to y∗
t , H

∗
t , w∗

t and R∗
t . The imple-

mentation of this algorithm corresponds to expanding yt, H, wt and R in equation (A.1) in the

Appendix by means of an indicator function which takes into account if yi,t ∈ yt is observed

or not. The estimation of the models’ parameters is done by maximizing the log-likelihood of

{y∗
t }

t=T
t=1 numerically with respect to the unknown parameter matrices.

The Kalman filter algorithm calculates recursively one-step-ahead prediction and updating

equations of the dynamic factor and the mean squared error matrices, given the parameters of

the model and starting values for the state vector, the mean squared error and, additionally, the

probabilities of the Markov states. The updating equations are computed as averages weighted

by the probabilities of the Markov states. The maximum likelihood estimators and the sample

data are then used in a final application of the filter to draw inferences about the dynamic factor

and the state probabilities.15

2.5 Competing models

To assess the performance of the MS-DFM, we compare our framework to several competing

models. Importantly, we lay our focus on models that share some of the main characteristics

of the MS-DFM. They contain the same set of indicators, allow for mixed-frequencies of the

indicator series, account for missing observations and revisions to GDP data. The assumptions

regarding lag-polynomials and identification restrictions remain the same.

Linear dynamic single-factor model (DSFM)

The specification of a Markov-switching process for the common factor, ft, has introduced a

non-linearity into an otherwise standard linear dynamic factor model. Given its simplicity and

parsimoniousness, the DSFM is the most natural model of reference. This applies in particular

to the computational complexity within the Kalman filter iterations.

To obtain the DSFM, the model presented in Section 2.3 changes only in equation (5). The

equation has to be adjusted to read

(1− φf (L)) · ft = νft , (16)

in which φf (L) is a second-order lag-polynomial. Details on the model specification and solution

can be found in the Appendix.

Mixed Frequency-Factor Augmented Vector Autoregressive (MF-FAVAR) model

The single-factor model presented above only allows for the dynamics to occur in the equation of

the factor as well as in the error terms; this might at times be too restrictive. For this reason we

consider the MF-FAVAR model as an alternative. It allows for a dynamic interaction between the

factor ft and some observed variables of interest. This extension increases the overall dynamic

15Technical details are explained in the Appendix.
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potential of the model noticeably. The single-factor model can be extended to a MF-FAVAR

model by modifying two equations only. In particular, equation (4) changes to the following
(

yft
y1stt

)

=

(
ω(L)
ω(L)

)

·
[
γq · y

M
t

]
+

(
0
ǫt

)

(17)

where yMt constitutes the monthly GDP growth rate extrapolated from the quarterly growth

rates given of yft and y1stt . Hence yMt can be treated as an observed variable. Finally, equation

(5) changes to

(I − φf (L)) ·

[
yMt
ft

]

= ν
f
t (18)

where νft is now a 2 × 1 vector, and E
[

ν
f
t · (νf

t )
′
]

= Σf is a 2 × 2 matrix and φf (L) a matrix

lag-polynomial. We identify the model by imposing that the (2, 2) element in Σf is unity and

γq = 1. The MF-FAVAR model is discussed in detail in the Appendix.

The main differences between the DSFM presented above and the MF-FAVAR specifica-

tion are that (i) the factor of the MF-FAVAR model is constructed without the information in

[yft , y1stt ]′; and (ii) the stochastic characteristics of the two models differ; in particular, since

φf (L) is a matrix lag-polynomial of order two, the MF-FAVAR allows for much richer dynamic

properties than the DSFM.

3 Data

This section elaborates on the indicator selection process and describes the final data set used.

To select an appropriate set of indicators, we use the simple dynamic single-factor model (DSFM)

as benchmark model instead of the MS-DFM. The reason for this choice is mainly driven by the

computational complexity introduced by the Markov-switching process.

3.1 Selection of indicators

A meaningful starting point for selecting indicators entering a factor model is the approach of

Stock and Warson (1992). Accordingly, monthly data for production, expenditure and income as

well as employment form the basis.16 One could then add other specific indicators to potentially

improve the model fit. As data availability in the case of Switzerland is rather scarce, we are

however forced to take a modified approach.

First, we collect as many monthly indicators as possible. Key criteria to keep a variable in

our sample are (i) timely publication and (ii) the length of a series. For instance, industrial

production does not fulfil these criteria. The series begins in 2014 only and has a publication

lag of 60 days. Employment is another series that we have to discard. It is only available on a

quarterly frequency and is released with a significant publication lag. We were able to collect a

set of 31 variables, covering a wide range of economic data.17 To these monthly variables we add

the two quarterly series for GDP (first and final releases).

16In the case of Stock and Warson (1992), they chose the four monthly coincident variables comprised in
the Index of Coincident Economic Indicators (CEI) compiled by the US Department of Commerce (DOC). In
particular industrial production, total personal income less transfer payments, total manufacturing and trade
sales and employees on non-agricultural payrolls.

17Imports, exports, overnight stays, retail sales, new car registrations, energy consumption, term spread, Swiss
market index (SMI), Swiss performance index (SPI), oil price, real and nominal effective exchange rate, bank

10



Second, we implement a procedure based on a combinatorial algorithm to identify an appro-

priate subset out of the 31 monthly indicators. The selection process is as follows:

1. Identification of a common factor based on a combinatorial algorithm to choose the best

combination of variables within the dynamic factor model. The number of variables in-

cluded is pre-determined. Let k be the number of variables being included in the dynamic

factor model and n > k be the number of variables in the sample, we then obtain a total

of bn,k := k!/ (k! · (n− k)!) different combinations. For each combination, we compute the

share of variance in GDP growth explained by the common factor.

2. Exclusion of all variable combinations whose R2 is lower than some threshold value ǫ̃.

This leaves us with a smaller subset of variable combinations relative to the original bn,k

combinations.

3. Use of economic judgement to restrict the subset of variable combinations of the second

step to only one final combination of variables. The selection pays attention in particular

to economic phenomena related to financial market developments and aggregate demand,

among others; and to data specific issues as for instance time delay in publication, etc.

The motivation for choosing a combinatorial algorithm within the selection process stems from

Boivin and Ng (2006) and Bańbura and Rünstler (2011). Accordingly, the inclusion of an addi-

tional variable to the model does not necessarily improve its performance. Rather, the resulting

factor might explain less of the variance in GDP, even when the new variable displays a decent

correlation with GDP. When the additional variable is correlated with a subset of variables al-

ready in the model, the factor has a bias towards this subset of variables. As a consequence, the

resulting factor explains a large fraction of variation in each variable of this subgroup, but less

of the variance in GDP. We account for this potential problem by considering the contribution

of an additional variable subject to the variables already present in the model. In principle,

our procedure for indicator selection is similar to Camacho and Perez-Quiros (2010). They only

consider a variable relevant for their model if by adding a new variable, the model fit improves –

they too rely on the R2 between the factor and GDP. By this, however, they ignore the potential

of the combination of different variables already being part of the model in having an effect on

the model fit when adding a new variable. This is relevant once the variables of a small subset are

highly correlated among each other, possibly worsening the overall model fit, even though each

variable of this subset might be useful individually (see Boivin and Ng, 2006). Our methodology

comprises a more formal statistical approach for selecting the variables. Though computationally

more complex, it allows for more flexibility within the selection of an appropriate set of variables.

With the objective to select a number of variables similar to Camacho and Perez-Quiros (2010)

who consider 10 indicators, applying simply our combinatorial algorithm – the first step of the

selection procedure – would amount in selecting a combination of 10 variables out of 31, resulting

in nearly 85 million possible indicator combinations. To reduce the computational complexities,

assets, loans, KOF industrial orders, PMI, UBS consumer survey, KOF industry and construction surveys, vacancy
postings, unemployment rate, social security contributions, CPI, EPI, IFO survey, ZEW survey.
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we apply the algorithm twice. First, we identify a Core-model with k = 4.18 Second, by relying

on the same selection procedure, we extend the Core-model to a more comprehensive, i.e., final -

model set-up. This approach allows us to reduce the number of variable combinations being

considered within the process of variable selection drastically and make the selection process

tractable.19

As regards the Core-model, we strive to select indicators possibly similar to the ones used

in Stock and Warson (1992).20 For this purpose, we restrict the selection procedure for the

Core-model to the subset of hard indicators only. We rest upon the combinatorial algorithm

only and neither rely on a threshold value for the R2 nor on economic judgement to choose

among candidate Core-models. Among all possible variable combinations, we then consider the

one which exhibits the highest R2. The variables that have not been selected for the Core-model

are then part of the selection process for the final -model. Out of the remaining 27 indicators we

then choose six variables, using the selection procedure described above for a second time. The

combinatorial algorithm yields a set of different variable combinations from which we have to

decide upon a final set. To this purpose, we now use the R2 from the Core-model as threshold

value to discard sets of variable combinations having a fit worse than the Core-model. Among the

remaining variable combinations, we apply economic judgement to obtain a final set of variables

for the MS-DFM. In fact, this involves only a few variable combinations and the discrimination

among them is difficult as they all show a comparably high value of the R2. It turns out that these

variable combinations share the same set of hard indicators, however, they contain fairly different

soft indicators. Many of the soft indicators are highly correlated with each other, implying an

overall similar model fit. We choose the particular variable combination with soft indicators that

are (i) earliest available, and (ii) comprise the longest time series.

The Core-model consists of four monthly indicators (total imports of goods, total retail sales,

the term spread and bank assets) and two quarterly GDP series. With this specification the MS-

DFM achieves a correlation of 0.74 of the factor with the first release of GDP (0.69 with the final

vintage). The Core-model comprises variables that are generally perceived as important in the

context of forecasting GDP (see for instance Camacho and Garcia-Serrador, 2014). Imports are

an indicator for internal demand, and in the case of Switzerland – a small open economy – also

for external demand since the import share in exports is extraordinarily high. Total retail sales

cover a broad range of private consumption on the expenditure side. The term spread is well

known as a leading business cycle indicator capturing both expectations as well as the monetary

policy stance of the economy (see for instance Ang, Piazzesi, and Wei, 2006; Wheelock and

Wohar, 2009). It enters the model in first-differences. Finally, bank assets contain information

on liquidity in the financial sector. As highlighted in Adrian and Shin (2010), this variable

captures swings in financial markets and correlates highly with the value added in the financial

18In principle, we could also choose k = 3 or k = 5. We chose k = 4 keeping in mind that the DSFM of Stock
and Warson (1992) was built on the same number of indicators.

19With our approach, the maximum number of variables being considered in the selection algorithm is fixed –
this can indeed weigh on the fit of the model. In Section 5.2 we show in how far the inclusion of further variables
changes the fit of our final-model.

20Optimally, we would choose the same variables as in Stock and Warson (1992). For Switzerland, however, such
data does not exist, either because of the frequency (e.g., employment is only available on a quarterly frequency)
or lack of data (e.g., industrial production).
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Table 1: Indicators selected for Swiss DSFM

Name Definition First obs. R. F. S.A. T. D. M. S.

GDP 1st Quarterly real GDP (real time) 2002-Q3 Y Q 1 1 5 2 SECO
GDPf Quarterly real GDP (final estimate) 1980-Q1 Y Q 1 1 5 2 SECO
Imports Total imports of goods, volume 1980-M1 Y M 1 1 20 1 FCA
Sales Total retail sales, volume 1980-M1 Y M 1 1 5 2 FSO
Spread 10y-govt bond yield minus 3-month rate 1980-M1 N M 0 0 1 1 SNB
REER Swiss Franc real effective exchange rate (broad) 1980-M1 N M 0 1 15 1 BIS
Orders KOF manufacturing order (to previous month) 1980-M1 Y M 1 0 5 1 KOF
Loans Loans of private households (without mortgages) 1980-M1 Y M 0 1 20 2 SNB
Assets Total assets of commercial banks 1987-M12 Y M 0 1 20 2 SNB
VSMI Swiss equity market volatility index 1999-M1 N M 0 0 1 1 SIX
PMI Total purchasing managers’ index 1995-M1 N M 1 0 1 1 Markit
UBSc UBS consumption indicator 1996-M2 Y M 1 0 30 1 UBS

Note: From left to right: Name reports the acronym for the variable; Definition describes the respective indica-
tor series; First obs. specifies since when data are available (the format is either year-quarter or year-month); R.

indicates whether the series are permanently subject to revisions; F. determines the frequency of the series (M:
monthly; Q: quarterly); S.A. specifies whether the variable is seasonally adjusted; T. specifies whether a variable
has been transformed to growth rates; D. reports the approximate day of release of each variable; M. indicates
how many months after the end of the reference period the data are released; and finally S.: BIS - Bank of In-
ternational Settlements; FCA - Federal Customs Administration; FSO - Swiss Federal Statistical Office; KOF -
Swiss Economic Institute; SECO - State Secretariat for Economic Affairs; SIX - Swiss Stock Exchange; SNB -
Swiss National Bank; UBS - United Bank of Switzerland.

sector. As the financial sector constitutes an important industry of the Swiss economy, we hence

consider bank assets jointly with the term spread as important variables for the model. In other

words, to the extent that the combinatorial algorithm attaches great importance to these two

variables, this pure statistical result can be underpinned by economic theory.

3.2 Final set of indicators

The final -model consists of a total of 10 monthly indicator variables. Details are summarized in

Table 1. For the MS-DFM the correlation of the factor with GDP is 0.86 for the first release

(0.83 for the final vintage). The enlarged model features two soft indicators, the PMI and

the consumption indicator. The former asks managers about their economic sentiment with

respect to the previous month. The latter contains information on private consumption trends,

in particular it is based on credit card transactions made via the bank UBS. 21 Furthermore,

the model contains the trade-weighted (broad) real exchange rate, the stock of orders compared

to the previous month out of the KOF business survey (in levels), loans of private households

without mortgages and the Swiss stock market volatility index VSMI.22

Out of the initial 31 variables the selected combination of ten monthly indicators was the

one which performed best and is economically meaningful.23 The final set proved to be robust

21Both indicators exhibit higher correlation with the year-on-year GDP growth rate than with quarter-on-
quarter rate, which is why they load with 11 lags on the common factor. The model outcome does not change
qualitatively when they are specified as hard indicators, i.e., loading contemporaneously on the factor.

22An interesting alternative to stock market volatility would be a general measure of financial market stress
(Duprey, Klaus, and Peltonen, 2017; Glocker and Kaniovski, 2014) or a measure of business uncertainty (Glocker
and Hölzl, 2019); unfortunately data for these measures are not available.

23The information used in the model stems entirely from business cycle indicators. Economic policy as such does
not enter. However, our model is flexible enough so that it could be extended to combine the following two pieces
of information on economic policy in real-time: (i) the ex-ante path of policy as published/announced by policy
makers; (ii) incoming, observed data on the actual degree of implementation of ongoing plans. In this context
Pérez Quirós, Pérez, and Paredes (2015); Riguzzi and Wegmueller (2015); Glocker (2013, 2012), among others,
show that government (consumption) spending conveys useful information about ex-post policy developments
relevant for GDP.
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Table 2: Factor loadings

Model GDP f Imports Sales Spread Assets REER Loans Orders VSMI PMI UBSc

Core 0.37 0.11 0.09 -0.26 0.16
(0.12) (0.09) (0.02) (0.10) (0.08)

DSFM 0.06 0.02 0.02 -0.06 0.02 -0.02 0.03 0.14 -0.15 0.27 0.23
(0.02) (0.01) (0.01) (0.02) (0.01) (0.01) (0.02) (0.05) (0.07) (0.11) (0.12)

MS-DFM 0.10 0.07 0.06 -0.15 0.05 -0.13 0.07 0.08 -0.15 0.25 0.22
(0.03) (0.01) (0.00) (0.05) (0.02) (0.08) (0.04) (0.03) (0.02) (0.05) (0.05)

Note: For each model specification, the first row reports estimated factor loadings and (in brackets)
their standard errors. See Table 1 for a description of the indicators, and Table 7 in the Appendix
for a complete list of parameters estimated.

to enlargements of the model in various directions. We tested our model using disaggregated

versions of the variables already included in the model. For instance, we used retail sales without

oil related products instead of total retail sales. We failed at improving our model in all cases.

Further we tested whether exchanging specific variables could lead to equal or similar results.

In that case, we included vacancies as a labour market indicator and exports as an indicator

for external demand; however, the factor loading of vacancies turned out to be not significantly

different from zero, although the correlation between the factor and GDP would have been com-

parably high. For exports, the correlation decreased substantially. As a final test, we simulated

the model including the complete set of 31 variables. The resulting correlation for this large

sample factor model decreased to as low as 0.15.

4 Results

Section 4.1 presents the in-sample properties of the MS-DFM and contrasts them to the outcomes

of the linear DSFM. In Section 4.2, we study the out-of-sample forecasting performance of the

models outlined in Section 2 based on real-time GDP data. We compare the performance both for

quarterly (short-term) and annual (medium-term) GDP growth. Further, we show the usefulness

of our preferred model to detect turning points and to identify recessions in the Swiss business

cycle.

4.1 In-sample properties

We present the estimated factor loadings in Table 2; with standard errors in parenthesis (the

complete list of estimated parameters can be found in the Appendix). The estimates reflect

the degree to which variations in each observed variable are correlated with the latent factor.

The first two rows display the loadings estimated with the DSFM and the third row reports the

loadings estimated with the MS-DFM. All variables in the model show statistically significant

factor loadings. Qualitatively, there is no difference in factor loadings between the linear DSFM

and the MS-DFM. Quantitatively, the difference is overall quite small. In the MS-DFM, the

term spread and REER load more negatively on the factor, imports and sales slightly more

positively. As a consequence of the autoregressive structure characterising the factor in the

DSFM, it captures less of the short run volatility contained in these indicators, leading to slightly

lower factor loadings (in absolute terms).
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Table 3: Cumulative weights (in%)

Month GDP1st GDP f PMI UBSc Imports Sales Spread REER Loans Orders Assets VSMI

2016.06 100 0 0 0 0 0 0 0 0 0 0 0
2016.07 0 0 7.6 7.0 18.7 10.2 12.4 2.5 11.6 14.5 5.2 10.3
2016.08 0 0 8.0 7.4 19.4 10.6 12.5 2.5 11.9 13.3 5.2 9.2
2016.09 100 0 0 0 0 0 0 0 0 0 0 0
2016.10 0 0 7.6 7.0 18.7 10.2 12.4 2.5 11.6 14.5 5.2 10.3
2016.11 0 0 8.0 7.4 19.4 10.6 12.5 2.5 11.9 13.3 5.2 9.2
2016.12 100 0 0 0 0 0 0 0 0 0 0 0
2017.01 0 0 7.6 7.0 18.7 10.2 12.4 2.5 11.6 14.5 5.2 10.3
2017.02 0 0 8.0 7.4 19.4 10.6 12.5 2.5 11.9 13.3 5.2 9.2
2017.03 0 0 9.9 9.2 23.6 12.9 15.1 3.0 0 15.6 0 10.7
2017.04 0 0 19.5 0 0 0 29.2 0 0 30.3 0 21.0

Note: See Table 1 for acronyms, data transformation and a description of the indicators.

Table 3 reports the evolution of the forecast weights (standardized to sum up to 100) over

the latest months.24 Whenever the GDP figures are published (March, June, September and

December), the cumulative forecast weights of all other indicators are zero. The series have

weights different from zero only in those periods where GDP data are not available. The weights

change according to the information set available at each point in time. In the first half of the

month, the term spread (29.2%) and orders (30.3%) carry the largest weights; however, with

more data becoming available, their weights decline. Although the real exchange rate and bank

assets carry relatively low weights, they still incorporate non-negligible information about the

stance of the Swiss business cycle and are therefore important for the performance of the model.

The maximum likelihood estimates of the Markov-switching elements are given in Table 4.

The complete list of estimated parameters of the MS-DFM can be found in the Appendix. The

maximum likelihood estimates imply that, as concerns the regime represented by ζt = 0, the

intercept is positive and statistically significant; while the regime represented by ζt = 1, has a

statistically significant negative intercept. Hence we can associate the first regime with economic

expansions and the second regime with recessions. Table 4 also shows the mean values for the

two states once they have been de-standardized (µ∗(ζt = 0) and µ∗(ζt = 1)); these values imply

that the average quarter-over-quarter growth rate of final GDP in the expansionary regime is

around 0.6%, and -1.0% in the recessionary regime.

Our estimates for the transition probabilities are 0.98 for p00 and 0.86 for p11, respectively.

These estimates are in line with the well-known fact that expansions are longer than contractions,

on average. In this context, p00 describes the probability that an expansion is followed by an

expansion, and p11 captures the probability that a recession follows a recession. These estimates

imply that the expected duration of an expansion is around 50 months (= 1/(1− p00)) and that

of a recession of around 7 months (= 1/(1− p11)).

Based on these estimates, the upper subplot in Figure 1 shows the business cycle factors

from the MS-DFM (orange bars). The factor based on the MS-DFM displays a high degree

of non-linearity. The non-linearities appear to be particularly pronounced during recessionary

episodes. In periods of an economic downturn, both business cycle factors tend to lead GDP

growth slightly.

The upper subplot in Figure 1 also shows the recession probabilities. In particular, the regime

24The calculations are explained in detail in the Appendix.
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Table 4: MS-DFM - Estimates

Parameters µ(ζt = 0) µ∗(ζt = 0) µ(ζt = 1) µ∗(ζt = 1) p00 p11

Estimates 0.28 0.61% -2.94 -1.04% 0.98 0.86
(0.06) (0.46) (0.17) (0.20)

Note: µ∗(ζt = 0) and µ∗(ζt = 1) refer to the de-standardized values of µ(ζt = 0) and µ(ζt = 1),
respectively. They refer to the conditional mean quarter-over-quarter growth rate of final GDP in
either state. The values in parentheses are p-values for the null-hypothesis that the corresponding
point estimate is zero.

Figure 1: Recessionary Episodes - in sample estimates of state probability
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Note: The upper subplot of the figure displays the business cycle factor from the MS-DFM, together with
the smoothed state probability based on an in-sample estimation. The lower subplot shows the quarterly
growth rate of final GDP and the recessionary episodes based on values of the smoothed state probability
above a threshold value of 0.66.

probabilities refer to prob(ζt = 1|IT ;ϑ) where It = (X1, ...,Xt) is the information set up to and

including period t, and t = 1, ..., T where T is the sample length and ϑ is the vector comprising

all estimated parameters of the MS-DFM. The regime probability prob(ζt = 1|IT ;ϑ) allows to

make inference about what regime was more likely to have been responsible for producing the

date t observation of Xt. It provides clear advice concerning several recessionary episodes. There

are, however, also a few episodes where the regime probability is at a value of around 0.5 and

hence the evidence concerning the prevailing state is uncertain. Following Nierhaus and Abberger

(2015), we associate only those values of the regime probability with a recession which are above
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Figure 2: Business Cycle Dating - Comparison
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Business Cycle Dating - ECRI
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Note: The upper figure displays business cycle dating for the Swiss economy based on the Economic Cycle
Research Institute (ECRI). The lower figure shows technical recessions, defined by two consecutive negative
quarters of GDP growth. The grey bars characterize recessionary episodes. Additionally, the figures show
our measure for the state probability for recessionary episodes from the MS-DFM and the quarterly final
GDP growth rate.

0.66.25 This leaves us with seven recessionary episodes, which are depicted in the lower subplot

in Figure 1. These recessions are characterized by differences concerning the duration of the

economic downswing as well as the deepness of the recession. Apparently, the removal of the

Swiss Franc lower bound in January 2015 did not induce a regime shift. However, the period of

strong appreciation of the currency between end-2007 and 2011 caused a regime switch. This

provides an explanation why the SNB at that time decided to introduce the currency floor in

the first place. Other recessions can be attributed to the global slump triggered by the second

oil crisis in 1982, the domestic housing crisis in the mid-1990s, the DotCom-bubble of 2003 and

the financial crisis of 2008-09.

In Figure 2 we compare the recession classification of our model with two alternative business

cycle dating approaches. The grey bars in the upper subplot of the figure display recessionary

25We consider our decision rule as rather agnostic – a commonly used alternative threshold is a value of 0.5 (see
for instance (Hamilton, 1989; Carstensen, Heinrich, Reif, and Wolters, 2017)). According to our results, the choice
of threshold is of second order importance, as the smoothed state probabilities quickly jumps to one whenever a
technical recession materialized.
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episodes as proposed by the Economic Cycle Research Institute (ECRI).26 Alternatively, the

lower subplot of the figure displays recessionary episodes based on the technical definition for

recessions. In that case, a recession is defined by two consecutive quarters of negative GDP

growth. In the absence of an official recession dating committee, an advantage of the technical

definition over alternative business cycle dating measures is its simplicity and timeliness. But,

as the period 1995 to 1997 for Switzerland illustrates, the technical definition does not capture

accurately recessionary phases in which GDP growth rates are close to zero but not necessarily

negative. In that case it is instructive to consider a more judgemental measure like the one from

ECRI.27

We find a high overlap of our recessionary regime probabilities (displayed in blue) with both

the recession dating approach of ECRI and the technical recessions. Remarkably, the recession

probabilities have a spike either at the beginning of a technical recession episode, or show a strong

increase prior to the actual beginning of a recession. Our findings highlight the reliability of our

model to identify recessionary episodes in a timely manner. Another observation is remarkable.

In the case of severe monetary policy intervention in 2011 (introduction of exchange rate floor)

and 2015 (abolition of exchange rate floor), the recession probability shortly increased to indicate

a recession. In the latter case, it did not pass the threshold of 0.66, but was shortly greater than

0.5. Although in both cases a recession did not materialize, the Swiss economy experienced

substantial downswings and periods of GDP growth rates below average.

4.2 Out-of-sample properties

The starting point of the out-of-sample exercise is the construction of a real-time data set. To

do so, we follow the principle of putting the data available at a specific point in time into its

corresponding cell within the so-called real-time data set. Thereby we ensure that at each point

in time when a forecast is made, only the information available at that specific day is used. This

allows to assess the models’ forecasting performance in real-time.28

We construct our real-time data set on bi-weekly vintages. For each month within the pe-

riod 2004-2016 we collect the whole set of time series available at the following two vintages:

h1/mm/yy and h2/mm/yy; where h1 refers to the end of the first half of a month and h2 to the

end of the same month. These vintages are kept fixed until the point in time when a new series

was updated. Our analysis is truly real-time in the sense that we use the genuine real-time GDP

26ECRI classifies an episode as a recession in which companies dismiss employees, incomes fall, spending goes
down, and output declines – the co-movement of all four variables is key. According to Lakshman and Banerji
(2004), this definition provides clarity when it comes to determining if a recession has begun, unlike the popular
“two quarters of negative GDP growth” rule of thumb, according to which, if GDP falls for two straight quarters,
we have met the “technical” definition of a recession. GDP is just a measure of an economy’s output. But if
employment, income, and sales do not fall at the same time, the temporary period of negative-output growth will
not catch on and spread, and no recession will occur.

27For completeness, we have also compared our recession estimates to the business cycle dates published by
the OECD. Rather than recessions, this approach identifies the time between a business cycle peak and trough.
The OECD business cycle phases are based on the growth-cycle approach, where cycles and turning points are
measured and identified in the deviation from trend-series. Against this background, the OECD business cycle
phases comprise only a vague basis of comparison. Nevertheless, our recession probabilities are well in line with
the identified downswings – we would like to thank an anonymous referee who pointed this out.

28An evaluation of forecast errors by using the ex-post data for a specific point in time is questionable since
measures of forecast errors – as root-mean-squared error (RMSE) – can be deceptively lower when using ex-post
data for GDP rather than real-time data (Stark and Croushore, 2002).
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series from Indergand and Leist (2014). With respect to the monthly indicators the exercise

is pseudo real-time, i.e., we use the latest available data vintage.29 This data set allows us to

closely mimic the forecasting procedure a practitioner would have performed at any time during

the last few years when computing model forecasts. Table 1 shows which of the time series got

updated at which of the two vintages (h1 or h2). The first vintage for which we collect data for

all indicators is vint-h1/01/04. We end up with 312 different vintages for the period h1/01/04

to h2/12/16.

4.2.1 Short-run forecasting

Our real-time data set allows to assess the gain in prediction precision of the models once further

prompt observations are added. We calculate predictions for (i) forecasts, (ii) nowcasts, and

(iii) backcasts of quarterly Swiss real GDP growth. For the nowcast of quarter tq, we use all

information up to and including the middle of quarter tq, that is, the middle of the second month

of quarter tq. Similarly, we compute backcasts based on information up to and including one

month after quarter tq ended. Finally, forecasts are made with information available six months

before the end of tq. We do so for all quarters from Q1:2004 until Q4:2016.

Table 5 reports in the first row the mean-squared error (MSE) statistics of the MS-DFM.

Next, rows 2 to 6 report the MSE of the MS-DFM relative to the MSE of DSFM, the MF-FAVAR,

two benchmark models – a random walk (RW) and an autoregressive model of order two (AR)

– and the Bloomberg Consensus forecasts (available only for the period 2014Q4-2016Q4). Both

benchmark models are estimated with real-time data to produce predictions. The last five rows

display the p-values resulting from the modified Diebold-Mariano test.30

Overall, the linear DSFM displays a slightly smaller MSE than the MS-DFM for backcasts,

whereas the MS-DFM tends to have a slightly a smaller MSE for nowcasts. Their performance is

very much comparable and differences are in no case significantly different from zero. Compared

to the other models and the consensus forecast, the gain in using the MS-DFM in forecasting

GDP essentially depends on the horizon. As concerns backcasts, the MS-DFM significantly

outperforms both benchmark models and the MF-FAVAR. It performs also significantly better

than the consensus forecast when considering GDP 1st. For nowcasts, the performance of the

MS-DFM is still remarkable. When it comes to forecasts, however, the MSE of the MS-DFM

is only significantly lower compared to the random walk forecast. Compared to the rest, the

forecasting performance of the MS-DFM is not significantly better, though its MSE statistics are

smaller for GDP 1st.

4.2.2 Medium-run forecasting

We extend the forecasting horizon to evaluate the models’ performance in predicting annual

growth rates of GDP. Particularly among policy institutions and practitioners, the prediction of

29To the best of our knowledge, there is no real-time data of monthly Swiss economic indicators publicly
available. Of the ten monthly indicators, only imports and sales might have undergone substantial revisions.
Financial variables are not revised, and revisions to survey data are seldom and at most marginal.

30Diebold and Mariano (1995) provide a pairwise test to analyse whether the differences between two or more
competing models are statistically significant. As there is potentially a short-sample problem, we apply the
modified version of the Diebold-Mariano test according to Harvey, Leybourne, and Newbold (1997).
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Table 5: Predictive accuracy

GDP 1st GDP f

Backcasts Nowcasts Forecasts Backcasts Nowcasts Forecasts

Mean squared errors
MS-DFM 0.06 0.06 0.08 0.11 0.11 0.20

Relative performance of MS-DFM to
RW 0.36 0.29 0.29 0.15 0.15 0.28
AR 0.48 0.39 0.54 0.25 0.30 0.60
DSFM 1.02 0.96 0.98 1.03 0.97 1.08
MF-FAVAR 0.63 0.50 0.62 0.38 0.33 0.66
Consensus 0.79 0.51 0.85 1.07 0.74 1.32

Equal predictive accuracy tests (p-values)
RW 0.00 0.02 0.03 0.00 0.04 0.06
AR 0.00 0.07 0.14 0.01 0.11 0.21
DSFM 0.96 0.92 0.95 0.91 0.86 0.93
MF-FAVAR 0.03 0.06 0.17 0.03 0.14 0.26
Consensus 0.03 0.32 0.56 0.68 0.38 0.80

Note: Totally 52 quarters in the period 2004Q1-2016Q4 are evaluated. Entries in rows 2-6 are mean squared errors
(MSE) of MS-DFM relative to a random walk (RW), an autoregressive process of order two (AR), the linear dy-
namic single-factor model (DSFM), the Mixed Frequency-Factor Augmented Vector Autoregressive (MF-FAVAR)
model and the Bloomberg Consensus forecast. The last five rows display the p-values of the modified Diebold-
Mariano test of equal forecast accuracy according to Harvey, Leybourne, and Newbold (1997). In contrast to the
forecasts of all models, the Consensus-forecasts used here rest on a rather small number of observations (2014Q4-
2016Q4); hence the MSE-statistics should be interpreted with care.

annual growth rates is of importance (for instance for the budgetary process of the government).

In the case of Switzerland, every quarter the Federal Government’s Expert Group publishes the

official forecast for annual Swiss GDP growth. This judgemental forecast is the outcome of a

discussion among several federal agencies.31 This forecast is usually published around 10 days

after the release of the quarterly estimate of Swiss GDP. While the judgement of experts might

be helpful in increasing the precision of forecasts, the disadvantage of such judgemental forecasts

is that they might be blurred by individual optimism or pessimism. For our analysis, we collect

forecasts from the Federal Government’s Expert Group starting in 2002Q4 up to 2016Q4. The

forecast horizon varies from 1 to 8 quarters.

Apart from the official forecast, a variety of institutions provide forecasts of Swiss GDP

growth.32 A combination of such forecasts might also provide a more accurate prediction of

GDP growth as if only one institution is considered. For a series of countries, the Economist

Poll of Forecasters provides GDP forecasts by averaging the predictions of several major banks.

This procedure is similar to a consensus forecast. These forecasts are available on a monthly

basis. We collect these data starting in March 2003. The first year to be predicted is 2004 and

the forecast horizon is between 1 and 24 months.

Table 6 reports the results from comparing the performance of the MS-DFM with the judge-

mental and consensus forecast as well as with the other competing models. We use our real-time

analysis and generate forecasts for GDP 1st for as many quarters as necessary to complete the

current and the following year. The Expert Group’s and Consensus forecasts are based on the

vintage of GDP available at the time of the forecast, i.e., they include revisions to GDP. To make

the exercise comparable, we therefore appended our model forecasts to the corresponding GDP

31Participants of the meeting are the State Secretariat for Economic Affairs (SECO), the Federal Customs
Administration (FCA), the Swiss Federal Statistical Office (FSO), the Federal Finance Administration (FFA) and
the Swiss National Bank (SNB).

32For instance major banks or economic research institutes, among others.
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Table 6: Predictive accuracy for annual growth rates

Horizon [quarters] 8 7 6 5 4 3 2 1

Mean squared errors
MS-DFM 1.727 1.524 0.971 0.352 0.360 0.269 0.117 0.013

Relative performance of MS-DFM to
RW 0.30 0.32 0.35 0.24 0.25 0.44 0.65 0.57
AR 1.10 0.94 0.62 0.31 0.45 0.75 0.80 0.50
DSFM 1.01 1.01 1.02 0.98 1.08 1.00 0.98 0.93
MF-FAVAR 1.08 0.95 0.62 0.43 0.60 0.82 0.84 0.46
Consensus 1.03 0.98 0.97 0.77 1.14 1.07 0.90 0.17
Judgmental 0.98 0.81 0.68 0.49 1.06 0.81 1.86 0.57

Equal predictive accuracy tests (p-values)
RW 0.22 0.29 0.26 0.14 0.04 0.04 0.03 0.18
AR 0.56 0.72 0.39 0.32 0.03 0.06 0.06 0.27
DSFM 0.93 0.96 0.93 0.91 0.82 0.82 0.74 0.81
MF-FAVAR 0.61 0.75 0.44 0.43 0.06 0.09 0.09 0.10
Consensus 0.82 0.62 0.62 0.33 0.89 0.88 0.47 0.28
Judgmental 0.71 0.33 0.35 0.16 0.94 0.71 0.10 0.04

Note: Totally 13 years in the period 2004-2016 are evaluated. Consensus refers to the Economist
Poll of Forecasters. Entries in rows 2-6 are mean squared error (MSE) of the MS-DFM relative
to a random walk (RW), an autoregressive process of order two (AR), the linear dynamic single-
factor model (DSFM), the Mixed Frequency-Factor Augmented Vector Autoregressive (MF-FAVAR)
model, the Consensus forecast and the forecast from the Expert Group. The last six rows display
the p-values of the modified Diebold-Mariano test of equal forecast accuracy according to Harvey,
Leybourne, and Newbold (1997).

vintage and calculate annual growth rates.33 Again, we compute relative mean squared errors

(MSE) and test for significant differences via the modified Diebold-Mariano test.

Several results emerge: (i) the MS-DFM outperforms the random walk model at all horizons;

(ii) in predicting growth of the following year (horizon quarter 8-5), the MS-DFM outperforms

the judgemental forecast; (iii) the MF-FAVAR performs significantly worse than the MS-DFM

in predicting current years growth (iv) the DSFM tends to perform slightly better than the MS-

DFM for longer horizons, but the performance is nearly indistinguishable as regards their MSE

statistics and hence their forecast accuracy.

Following the methodology of Harvey, Leybourne, and Newbold (1997), we report results

for the equal predictive accuracy tests in the last six rows in Table 6. Notably, at the 10%

significance level the MS-DFM outperforms the RW benchmark, the AR-model and the MF-

FAVAR at the two, three, and four quarters horizon. Compared to consensus forecasts, the

performance of the MS-DFM is not significantly better at any horizon. In comparison to the

judgemental predictions, the MS-DFM has better predictive power in the very short horizon of

one quarter. This is in line with the results presented in Section 4.2.1 and confirms the fact

that dynamic factor models are particularly well suited for short-term forecasting. There is no

evidence that the forecasts of the MS-DFM have a higher predictive accuracy than those of the

DSFM.

4.2.3 Detecting turning points

Besides investigating the models’ forecasting performance over the sample, of particular interest

is to study how the model performs during specific historic episodes. Our real-time data-set

allows for such an assessment. We focus our analysis on two distinct episodes: (1) the global

33Consider the Appendix for the technical details on the calculation of annual GDP growth rates from quarterly
growth rates.
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Figure 3: Forecasting in real-time - different episodes
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Note: The figure plots real-time forecasts of the Markov-switching Dynamic Factor Model (MS-DFM) for
various episodes. The first subplot shows real-time forecasts for Q4:2008 (black diamonds) jointly with a
forecast based on an AR(2)-model (green line) and the GDP growth rate for Q4:2008 (first estimate and
final value; black dashed and solid lines). The second subplot shows the real-time forecasts for Q4:2008,
Q1:2009 and Q2:2009 jointly with the corresponding GDP growth rates for each quarter. Finally, the third
subplot shows real-time forecasts for Q1:2015 and the GDP growth rate for Q1:2015 (first estimate and final
value; black dashed and solid lines).

financial crisis of 2008-09; and (2) the first quarter of 2015 when the Swiss economy was exposed

to a significant monetary policy shock. We focus on the MS-DFM here.

The global financial crisis

The upper subplot in Figure 3 shows the forecast trajectory of the model for the fourth quarter

2008 which was made at different points in time.34 This plot is useful in order to address one

important question: When did the authorities realize that the downturn had started?

The model’s forecasts for GDP growth for 2008-Q4 (black line-dotted path) were positive

34We have omitted the confidence bands for better visibility of the point estimates.
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until the end of July. The model predicted a negative growth rate for 2008-Q4 the first time by

mid-August 2008 (vint-h1/08/08). There are two variables at work, which drive this significant

drop; these are on the one hand the PMI – it dropped from 48.5 (July) down to 41.4 (August) – as

well as the consumption indicator – it dropped from 2.0 (June) down to 1.78 (July). Noticeably,

the model’s forecast for 2008-Q4 GDP growth made at mid-August is already very close to

the first estimate (black horizontal solid line), which in turn was published at the beginning of

March 2009. We conclude that the model gave a rather precise projection for the first estimate

of 2008-Q4 GDP growth, seven months ahead of the first official GDP release.

The second subplot of Figure 3 displays the forecasts for some quarters from the outbreak of

the global financial crisis onwards. The episode was marked by substantial financial turbulence

and Switzerland recorded the first recession in several years (see also Figure 2). We produce

forecasts for the quarters 2008-Q4 – 2009-Q2. Next to each quarter’s projections, the figure also

displays the first estimate (solid horizontal line) and the final value (dashed horizontal line) of

the growth rate of GDP for the aforementioned quarters.

The black dotted line is the same as in the upper subplot. The projections for 2009-Q1 and

2009-Q2 follow a similar trajectory as the one for 2008-Q4. The predictions for the growth rate

of GDP drop in mid-summer 2008 and decline further the lower the forecasting horizon. For each

quarter depicted in the subplot, the model’s projections match the first estimate of the GDP

growth rate quite well.

Severe monetary policy interventions

Between end-2007 and 2011, the Swiss Franc (CHF) appreciated sharply against the Euro (EUR)

and against the US-Dollar (USD). This appreciation made the Swiss National Bank (SNB) believe

that it posed “an acute threat to the Swiss economy”. On September 6, 2011, the SNB put in place

an exchange rate floor of 1.20 CHF/EUR to avoid a further appreciation of the Franc against

the Euro. To the surprise of markets and institutions, on January 15, 2015, SNB removed the

exchange rate floor of 1.20 CHF/EUR. Within one day, the CHF appreciated more than 19% to

1.01 CHF/EUR.

In what follows we analyse the extent to which the MS-DFM was able to capture the effect

of the monetary policy shock in January 2015. The empirical model allows for two transmis-

sion channels of the monetary policy intervention: (1) the news channel35 and (2) the financial

market channel. Severe policy changes are usually associated with a change in economic agents’

perception of the future economic outlook. In our MS-DFM, news are considered as changes

in economic sentiment, which in turn are captured by soft indicators. The MS-DFM contains

two such indicators (PMI, UBSc). They allow for an immediate effect, as they are likely to

be affected already at the time of the announcement of the new policies. The latter channel is

captured by means of the real effective exchange rate, the term structure and the implicit stock

market volatility index. They are promptly available and characterise the effect of the monetary

policy interventions that operates by means of financial markets.

35In this context, news does not refer to data revisions as in Section 2.2, but rather to economic sentiment and
the surprises therein.
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In the bottom subplot of Figure 3, we show the model’s projections for 2015-Q1. The mone-

tary policy shock triggered some immediate contractionary effects for real economic activity with

the result of a negative GDP growth rate. The first official release of GDP data for this quarter

was in June 2015, more than five months after the monetary policy shock. We report the growth

projections for 2015-Q1 at different points in time. Up to and including the information until

mid-January 2015, the growth projections remain between 0.3% and 0.5%. However, at the end

of January (vint-h2/01/15) they drop significantly owing to a strong decline in the PMI. In mid-

February, the most recent values for the real effective exchange rate and the implicit stock market

volatility index for January are added to the information set, rendering the nowcast for GDP

growth negative. At the end of February, the model’s predictions are basically indistinguishable

from the first official GDP estimate.

4.2.4 Assessing recessionary episodes in real-time

The regime probabilities presented in Section 4.1 were based on information on the whole sam-

ple. However, due to different information sets and data revisions, the real-time data can be

deceptively less helpful in monitoring real activity. Against this background, we evaluate the

performance of our MS-DFM in tracking past Swiss business cycles shifts in real time by means

of the real-time data set.

We compute out-of-sample state probabilities of recessionary episodes for different informa-

tion sets to evaluate in how far new information changes the model’s assessment of the current

regime. We consider the following three measures for the recessionary regime probability: (i)

prob(ζt = 1|It−1;ϑ), (ii) prob(ζt = 1|It;ϑ), and (iii) prob(ζt = 1|It+1;ϑ). The first case estimates

the regime probability at time t with information up to and including time t−1, the estimate for

the regime probability at time t is hence a forecast. The second probability measure captures the

contemporaneous scenario; it evaluates the regime probability at time t considering all informa-

tion up to and including time t. Finally, the third probability measure considers the backward

looking scenario: it evaluates the regime probability at time t considering all information up to

and including time t+ 1.

Figure 4 shows the corresponding path of the regime probabilities for each scenario (black

solid line). It contrasts the estimates of the real-time regime probabilities with the in-sample

estimates (orange bars). In the forward looking scenario, the model gives only a vague hint

for each recessionary episode. The estimated regime probabilities for a recession always remain

below 0.5. This applies also to the episode surrounding the global financial crisis of 2008-09.

In the contemporaneous scenario, the model’s real-time estimates for the recessionary regime

probabilities match their in-sample counterpart already to a large extent. The probabilities for

the 2008-09 recession and the one in 2011-Q3/Q4 are already larger than 2/3 and hence would be

classified as recessionary episodes by our classification. Finally, in the backward looking case, the

recessionary regime probabilities from the real-time estimation can hardly be distinguished from

the in-sample estimates. However, there is still one noteworthy difference: the in-sample esti-

mates for the recessionary regime probabilities point towards a longer recession duration; in other

words, the real-time estimates of the recessionary regime probabilities tend to underestimate the

24



Figure 4: Recessionary Episodes - real-time estimates of state probability
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Note: The figure shows different estimates for recessionary episodes based on real-time out-of-sample esti-
mations of the state probability at time t. The subplots compare the real-time estimates of the recessionary
episodes with the in-sample estimates for the recessionary probabilities based on the whole sample.

duration of the recessionary episodes considered in Figure 4 to some extent.

5 Robustness analysis

We check the robustness of the MS-DFM across various dimensions. First, there is the possi-

bility that the combinatorial algorithm for indicator selection is subject to sample-dependency.
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Second, the MS-DFM features only a limited number of variables. It could still be the case that

introducing at least one further variable could lead to a significant model improvement. Finally,

we evaluate our assumption of the lag-length of the autoregressive processes and the number of

latent factors.

5.1 Sub-sample instability

The combinatorial algorithm used in Section 3.1 for selecting an appropriate set of variables

has been applied to the whole sample. However, structural changes in the underlying economic

dynamics could influence the choice of indicators over time or lead to time-variation in the

estimated parameters, rendering the MS-DFM less reliable for forecasting purposes. Against

this background, we analyse the extent to which the fit of our MS-DFM varies over time. We

consider time-variation in the factor loadings γq, γs and γh, in the variances σ2
q and diag(Σν) and

in the model fit measured by the R2 from a regression of the factor on the (final) GDP growth

rate. We consider a time-span starting in January 2004 and ending in December 2016 and apply

a rolling regression approach: we estimate the model based on a sample starting in 01:1980 until

01:2004 and recursively extend the window by adding an additional month until we end up in

12:2016. For each step we fully estimate the model.

We observe that some degree of time-variation is present, however, it is fairly small. The

time-variation of the factor loadings is smaller than their estimate of the in-sample standard

deviation. The same finding also applies to the variances and to the overall model fit.36 We

conclude that problems related to sub-sample instabilities are negligible.

5.2 Additional variables

Our proposed dynamic factor model features only ten monthly indicators. Although applications

of this approach for other countries use a similar number of variables, it could still be possible

that further variables improve the model fit. For this reason, we estimate the MS-DFM again,

but now with an additional eleventh variable. For each eleventh variable we evaluate the model

fit by means of the R2. We find that the inclusion of an eleventh variable generally renders the

model fit worse. We could not find a single variable yielding a noticeably higher R2 than the

Benchmark model.

5.3 Lag-length of the autoregressive processes

The combinatorial algorithm discussed in Section 2.4 is based on the prior assumption of a

lag-order equal to two of the autoregressive processes in the system of dynamic equations (6)-

(7). The lag-length is, of course, a testable assumption and should preferably be checked for

each set of variables within the combinatorial algorithm. This is, however, computationally not

tractable. Instead, we evaluate the plausibility of this assumption by using information criteria.

We calculate Akaike’s information criterion (AIC) and Schwartz’s Bayesian information criterion

(SBIC). AIC selects a lag-order of three and SBIC selects a lag-order of two. Given these results,

we consider a lag-order of two as appropriate for at least two reasons: first of all, simplier models

36The results for this are available upon request.
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should be preferred, and secondly, the AIC information criterion is fairly indifferent between a

model with two and/or three lags.

5.4 Number of factors in DSFM

We consider the DSFM, however, with two factors.37 We assess the performance of this model by

means of MSE. Considering the Mariano-Diebold test statistics, there is no statistical evidence

that the model with two factors performs better than the single-factor model. Moreover, the

MSE error statistics of the two models are fairly similar. Hence preference is given to single-factor

models as they comprise a more parsimonious specification.

6 Conclusions

Fundamental policy changes have the potential of introducing a regime switch. The prevalence

of a regime switch, or of non-linearities in general, pose a challenge for linear forecasting models.

The Swiss economy has witnessed several incidents of severe policy realignments recently. Against

this background, we propose a dynamic factor model (DFM) with a non-linear element for the

Swiss economy. We assess non-linearities by using a two-state Markov-chain. The dynamics

within a particular state are characterized by a linear specification, whereas the switch across

states depicts a non-linear element.

Our model estimates confirm the importance of considering non-linear elements. Additionally,

the Markov-switching specification allows for inference on the business cycle stance of the Swiss

economy. In an out-of-sample exercise, we show that our model provides an effective tool for

recession dating in real-time.

Finally, we find that the forecasting performance of the MS-DFM turns out to be as good as

peers that allow for richer dynamics. Moreover, in the short-run its predictions are significantly

more accurate than those of expert judgement and alternative baseline models.

37This implies that equation (16) comprises two independent autoregressive processes. We maintain a lag order
of two for all lag polynomials. The state-space representation of the two-factor model comprises a straight forward
extension to the one of the single-factor model outlined in the Appendix. Details on this and on the estimated
coefficients of the model are available upon request.
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A Appendix

The Sections A.1 - A.3 provide details on how the respective dynamic factor models can be cast
into a state-space representation.

A.1 State-space representation of the dynamic single-factor model (DSFM)

For simplicity, we begin with the dynamic single-factor model. To illustrate how the correspond-
ing matrices of the transition and measurement equation look like, we use the following: 0(i,j) is
a matrix of zeros of dimension i × j, Ir is an identity matrix of dimension r. We note that xs

t

is a ns dimensional vector of soft indicators, xh
t is a nh dimensional vector of hard indicators.

We assume here that the variables are all observed at a monthly frequency and that there are
no missing observations. Relaxing this assumption would require to extend yt, wt, R and H by
means of an indicator function.

Transition equation: This equation relates the observed variables to the factor and can be
expressed as:

yt = Hst +wt, wt ∼ NID (0, R) (19)

We use the following defintion of the vectors yt, st wt and variance co-variance matrix R:

yt =
[

yft , y
1st
t , (xs

t )
′, (xh

t )
′
]′

(20)

wt = 0(nX ,1) (21)

R = 0(nX ,nX) (22)

with n = nh + ns, nX = n+ 2 and38

st = [ft, ..., ft−11, ut,q, ..., ut−4,q, ǫt, ...

ust,1, u
s
t−1,1, ..., u

s
t,ns

, ust−1,ns
, ...

uht,1, u
h
t−1,1, ..., u

h
t,nh

, uht−1,nh

]′
(23)

Given these definitions, the matrix H will be the following:

H =






ft, ..., ft−11
︷ ︸︸ ︷

η11 0(1,6)

ut, ..., ut−4
︷ ︸︸ ︷

η12

ǫt
︷︸︸︷

0

ũ
s
t

︷ ︸︸ ︷

0(1,2·ns)

ũ
h
t

︷ ︸︸ ︷

0(1,2·nh)

η11 0(1,6) η12 1 0(1,2·ns) 0(1,2·nh)

η31 η31 0(ns,5) 0(ns,1) η32 0(ns,2·nh)

η41 0(nh,6) 0(nh,5) 0(nh,1) 0(nh,2·ns) η42




 (24)

with ũs
t =

(
ust,1, u

s
t−1,1, ust,2, u

s
t−1,2, ..., u

s
t,ns

, ust−1,ns

)
; ũh

t =
(
uht,1, u

h
t−1,1, uht,2, u

h
t−1,2, ..., u

h
t,ns

, ust−1,nh

)
,

and

η11 =
(

γq
3

2γq
3 γq

2γq
3

γq
3 0

)
(25)

η12 =
(

1
3

2
3 1 2

3
1
3

)
(26)

η32 = Ins ⊗ ( 1 0 ) (27)

η42 = Inh
⊗ ( 1 0 ) (28)

and η31 is a (ns × 6) matrix whose columns are γs and η41 is a (nh × 6) matrix of zeros whose
first column is γh.

State equation: Using the previous definitions of the vectors, the state equation can be ex-
pressed as:

st = Fst−1 + vt, vt ∼ NID (0, Q) (29)

38In our particular application, nh = 8, ns = 2 implying that n = 10 and nX = 12.
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where Q is a matrix whose off-diagonal elements are all zero and its diagonal is given by:

diag(Q) =
[
σ2
f , 0(1,11), σ

2
q , 0(1,4), σ

2
ǫ , diag (Σν)

′ ⊗ ( 1 0 )
]′

(30)

where diag (Σν) =
(
σ2
νs,1, ..., σ

2
νs,ns

, σ2
νh,1

, ..., σ2
νh,nh

)′
and the error term vt is given by:

vt =
[

νft , 0(1,11), ν
q
t , 0(1,4), ǫt, [ν

s
t,1, 0], ..., [ν

s
t,ns

, 0], [νht,1, 0], ..., [ν
h
t,nh

, 0]
]′

(31)

The matrix F becomes:

F =




















ft−1, ..., ft−12
︷ ︸︸ ︷

f11 0

ut−1, ..., ut−5
︷ ︸︸ ︷

0(1,5)

ǫt−1
︷︸︸︷

0

us
t−1,1, u

s
t−2,1

︷ ︸︸ ︷

0(1,2)

[· · · ]
︷︸︸︷

· · ·

us
t−1,ns

, us
t−2,ns

︷ ︸︸ ︷

0(1,2)

uh
t−1,1, u

h
t−2,1

︷ ︸︸ ︷

0(1,2)

[· · · ]
︷︸︸︷

· · ·

uh
t−1,nh

, uh
t−2,nh

︷ ︸︸ ︷

0(1,2)
I11 0 0(11,5) 0 0(11,2) · · · 0(11,2) 0(11,2) · · · 0(11,2)

0(5,11) 0 fγq 0 0(5,2) · · · 0(5,2) 0(5,2) · · · 0(5,2)
0(1,11) 0 0(1,5) 0 0(1,2) · · · 0(1,2) 0(1,2) · · · 0(1,2)
0(2,11) 0 0(2,5) 0 fs

1 0(2,·) 0(2,2) 0(2,2) · · · 0(2,2)
...

...
...

...
. . .

. . .
. . .

...
. . .

...
0(2,11) 0 0(2,5) 0 0(2,2) · · · fs

ns
0(2,2) · · · 0(2,2)

0(2,11) 0 0(2,5) 0 0(2,2) · · · 0(2,2) fh
1 0(2,·) 0(2,2)

...
...

...
...

...
. . .

...
. . .

. . .
...

0(2,11) 0 0(2,5) 0 0(2,2) · · · 0(2,2) 0(2,2) · · · fh
nh




















(32)

f11 =
(
φf,1 φf,2 0(1,9)

)
(33)

fγq =








φq,1 φq,2 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0








(34)

fs
1 =

(
φs
1,1 φs

1,2
1 0

)

(35)

fs
ns

=

(
φs
ns,1 φs

ns,2
1 0

)

(36)

fh
1 =

(

φh
1,1 φh

1,2
1 0

)

(37)

fh
nh

=

(

φh
nh,1

φh
nh,2

1 0

)

(38)

Kalman filter recursion: Let ŝt|t−1 be the estimate of st based on information up to period
t− 1. Let Pt|t−1 be its covariance matrix. The prediction equations are:

ŝt|t−1 = F ŝt−1|t−1, (39)

Pt|t−1 = FPt−1|t−1F
′ +Q. (40)

The predicted value of yt with information up to t − 1, denoted ŷt|t−1 is ŷt|t−1 = H∗
t ŝt|t−1,

such that the prediction error is ηt|t−1 = y∗
t − ŷt|t−1 = y∗

t − H∗
t ŝt|t−1 with covariance matrix

ξt|t−1 = H∗
t Pt|t−1H

∗
t +R∗

t . In each iteration, the log-likelihood can therefor be computed as

logLt|t−1 = −
1

2
ln
(
2π

∣
∣ξt|t−1

∣
∣
)
−

1

2
η′t|t−1

(
ξt|t−1

)−1
ηt|t−1 (41)
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The updating equations are:

ŝt|t = ŝt|t−1 +K∗
t ηt|t−1 (42)

Pt|t = Pt|t−1 −K∗
t H

∗
t Pt|t−1 (43)

in which K∗
t is the Kalman gain defined as K∗

t = Pt|t−1H
∗′
t (ξt|t−1)

−1. The initial values s0|0 = 0
and P0|0 = I, used to start the filter, are a vector of zeros and the identity matrix, respectively.

A.2 Markov-switching Dynamic Factor Model (MS-DFM)

We consider equations of the MS-DFM and cast them into the following state-space representa-
tion:

yt = Hst +wt, (44)

st = µ(ζt) + Fst−1 + vt, (45)

and
[

wt

vt

]

∼ i.i.d.N

(

0,

[

R 0

0 Q

])

(46)

The Markov-switching term µ(ζt) in turn is related to µ(ζt) as follows:

µ(ζt) :=

[

µ(ζt)
0ς−1,1

]

(47)

where ς is the length of the state vector st. The definition of the vectors (yt, st, wt and vt) and
matrices (H, R, F and Q) is the same as in equations (19) and (29) with the exception that now
expression (33), which is part of the matrix F , changes to the following:

f11 =
(
0 0 0(1,9)

)
(48)

that is, a vector of zeros, since equation (2.5) does not feature any autoregressive terms. Further
details can be found in Section A.1. The computational complexity within the estimation of
the MS-DFM model arises once we maximize the likelihood function, as the combination of the
Kalman filter with a Markov-switching element produces a 2-fold increase in the number of cases
to be considered. The problem here can be illustrated as follows:

Assume that we have some initial values for the parameters to be estimated; this gives us an
initial value s0|0 and P0|0 which is the unconditional variance of the state equation and captures
the uncertainty of s0|0. The algorithm behind the Kalman filter implies the following forecasting
step within the first iteration:

s
(j)
1|0 = µ(ζ0 = j) + Fs0|0 (49)

P1|0 = FP0|0F
′ +Q (50)

η
(j)
1|0 = y1 − ŷ

(j)
1|0 = y1 −Hs

(j)
1|0 (51)

Φ1|0 = E

[(

y1 − ŷ
(j)
1|0

)(

y1 − ŷ
(j)
1|0

)′
]

= HP1|0H
′ +R (52)

and equivalent expressions for: s
(i)
1|0, and η

(i)
1|0. Once having obtained expressions for the error

terms η
(j)
1|0 and η

(i)
1|0, we can proceed and compute the log-likelihood functions for each of the two

states: ζ0 = j and ζ0 = i:

λ
(j)
1 = −

1

2
ln

(

2π
∣
∣
∣Φ1|0

∣
∣
∣

)

−
1

2
η
(j)
1|0

(

Φ1|0

)−1 (

η
(j)
1|0

)′
(53)

and an equivalent expression for λ
(i)
1 . The unconditional density of y1 can be found by summing

λ
(ζ0={i,j})
1 over all values of the states {i, j}:
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f(y1) = p̃ · p(ζ0 = j|I0)e
λ
(j)
1 + (1− q̃) · p(ζ0 = i|I0)e

λ
(j)
1 +

q̃ · p(ζ0 = i|I0)e
λ
(i)
1 + (1− p̃) · p(ζ0 = i|I0)e

λ
(i)
1 (54)

The updating step within the Kalman filter implies:

s
(j)
1|1 = s

(j)
1|0 +K1|0η

(j)
1|0 (55)

P1|1 =
(
I −K1|0P1|0H

)
· P1|0 (56)

and an equivalent expression for s
(i)
1|1. The Kalman gain K1|0 is given by: K1|0 = P1|0H

(
Φ1|0

)−1
.

Having obtained values for s
(j)
1|1, and s

(i)
1|1, the first iteration ends and we would move on with the

second one; however, this is where the complexity arises: The first iteration yields two expressions

for the state vector: s
(j)
1|1 and s

(i)
1|1. Considering now the second iteration, equation (55) yields

four expressions for the state vector: s
(j,j)
1|1 , s

(i,j)
1|1 , s

(j,i)
1|1 and s

(i,i)
1|1 . The third iteration in turn

would yield eight expressions, and so on. Hence the iterations would quickly produce too many
different state vectors rendering the estimation intractable.

The increase in complexity is not only due to the state vector s
{i,j}
1|1 ; in fact for the first

iteration we have that P1|0 = P
(i)
1|0 = P

(j)
1|0 , however, from the second iteration onwards we

also have a Markov-switching state dependency in P
{i,j}
1|0 , which adds an additional degree of

complexity to the maximization of the log-likelihood function.
Viewed in more general terms, for each point in time t, the filter produces a 2-fold increase

in the number of cases to be considered, since at each t, the variable s
{i,j}
t and in turn P

{i,j}
t ,

Φ
{i,j}
t , K

{i,j}
t , etc. can take two new values and therefore, at each t we have 2t possible paths to

consider when evaluating the likelihood.
As a solution to this problem, Kim (1994) proposed a modification which results in getting

rid of the state dependency of the Markov-switching elements in the state vector; this approach
was used by Kim and Yoo (1995), Chauvet (1998) and Camacho et al. (2018). In particular, to
collapse the means and variances in order to apply equation (49) and (50) in a tractable form

within all iterations, Camacho et al. (2018) approximate s
(j)
t|t , s

(i)
t|t and P

(j)
t|t , P

(i)
t|t by a weighted

average of the updating equations, where the weights are given by the probabilities of the Markov
state; this implies for the first iteration:

s1|1 = s
(j)
1|1 · p(ζ0 = j|I1) + s

(i)
1|1 · p(ζ0 = i|I1) (57)

P1|1 = p(ζ0 = j|I1)

(

P1|0 +
(

s
(j)
1|1 − s1|1

)

·
(

s
(j)
1|1 − s1|1

)′
)

+

p(ζ0 = i|I1)

(

P1|0 +
(

s
(i)
1|1 − s1|1

)

·
(

s
(i)
1|1 − s1|1

)′
)

(58)

or in more general terms:

s
(j)
t|t =

∑1
ζt−1=0 p(ζt = j, ζt−1 = i|It)s

(i,j)
t|t

p(ζt = j|It)
(59)

P
(j)
t|t =

∑1
ζt−1=0 p(ζt = j, ζt−1 = i|It)

(

P
(i,j)
t|t +

(

s
(j)
t|t − s

(i,j)
t|t

)(

s
(j)
t|t − s

(i,j)
t|t

)′
)

p(ζt = j|It)
(60)
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and equivalent expressions for s
(i)
t|t and P

(i)
t|t ; and finally

st|t = s
(j)
t|t · p(ζt = j|It) + s

(i)
t|t · p(ζt = i|It) (61)

Pt|t = p(ζt = j|It)

(

P
(j)
t|t−1 +

(

s
(j)
t|t − st|t

)

·
(

s
(j)
t|t − st|t

)′
)

+

p(ζt = i|It)

(

P
(i)
t|t−1 +

(

s
(i)
t|t − st|t

)

·
(

s
(i)
t|t − st|t

)′
)

(62)

This approach eliminates the Markov-switching state dependency in the state vector within
the Kalman filter iterations and allows in turn to run the Kalman filter in the standard form.
Moreover, this set-up is nested in the dynamic factor model which allows for mixed frequencies
and missing observations. It is worth noting that including a missing observation in the data
set, the model will automatically replace the missing value by a forecast. Following the same
reasoning, forecasts for longer horizons and forecasts for other indicators can be automatically
computed.

A.3 The MF-FAVAR model

The Mixed Frequency-Factor Augmented Vector Autoregressive (MF-FAVAR) model is given by
the following system of equations ∀ t = 1, ..., T :

System of static equations
(

xs
t

xh
t

)

=

(

γs ·
∑11

j=0 ft−j

γh · ft

)

+

(
us
t

uh
t

)

(63)

(

yft
y1stt

)

=

(

ω(L)
ω(L)

)

·
[
γq · y

M
t

]
+

(

0
ǫt

)

(64)

where uh
t =

(
uht,1, ..., u

h
t,nh

)′
, us

t =
(
ust,1, ..., u

s
t,ns

)′
with n = nh + ns, nX = n + 2, and

ω(L) := 1
3 + 2

3 · L+ L2 + 2
3 · L3 + 1

3 · L4, where L is the lag operator.

System of dynamic equations

(I − φf (L)) ·

[

yMt
ft

]

= ν
f
t (65)

(I −Φu(L))

(
us
t

uh
t

)

= νt (66)

(

ν
f
t
νt

)

∼ NID

(

0,

[

Σf 0

0 Σν

])

(67)

where φf (L) and Φu(l) are in each case second-order polynomials. We assume that Φu(L) and
Σν are diagonal, implying that all covariances are zero by construction. For identification reasons
we impose that the (2, 2) element in Σf is unity and γq = [1, 1]′. The state-space representation
of the MF-FAVAR model reads as follows:

Transition equation: yt = Hst +wt, wt ∼ NID (0, R) with

yt =
[

yft , y
1st
t , (xs

t )
′, (xh

t )
′
]′

(68)

wt = 0(nX ,1) (69)

R = 0(nX ,nX) (70)

and

st =
[

yMt , ..., yMt−4, ft, ..., ft−11, (νf
t )

′, ǫt, ...

ust,1, u
s
t−1,1, ..., u

s
t,ns

, ust−1,ns
, ...

uht,1, u
h
t−1,1, ..., u

h
t,nh

, uht−1,nh

]′
(71)
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Given these definitions, the matrix H will be the following:

H =






yMt , ..., yMt−4
︷ ︸︸ ︷

η12

ft, ..., ft−11
︷ ︸︸ ︷

0(1,6) 0(1,6)

ν
f
t

︷ ︸︸ ︷

0(1,2)

ǫt
︷︸︸︷

0

ũ
s
t

︷ ︸︸ ︷

0(1,2·ns)

ũ
h
t

︷ ︸︸ ︷

0(1,2·nh)

η12 0(1,6) 0(1,6) 0(1,2) 1 0(1,2·ns) 0(1,2·nh)

0(ns,5) η31 η31 0(ns,2) 0(ns,1) η32 0(ns,2·nh)

0(nh,5) η41 0(nh,6) 0(nh,2) 0(nh,1) 0(nh,2·ns) η42




 (72)

where ũs
t , ũ

h
t and the parameter matrices/vectors η12, η31, η32, η41 and η42 are defined in Section

A.1.

State equation: st = Fst−1+vt, vt ∼ NID (0, Q) where Q is a matrix whose diagonal
is given by:

diag(Q) =
[
0(1,5), 0(1,12), diag (Σf ) , σ

2
ǫ , diag (Σν)

′ ⊗ ( 1 0 )
]′

(73)

where diag (Σν) =
(
σ2
νs,1, ..., σ

2
νs,ns

, σ2
νh,1

, ..., σ2
νh,nh

)′
and the following two off-diagonal elements

are different from zero: Q(18,19) = Q(19,18) = E
[

νft,1 · ν
f
t,2

]

= σ
ν
f
12

. The error term vt is given by:

vt =

[

0(1,5), 0(1,12),
(

ν
f
t

)′
, ǫt, [ν

s
t,1, 0], ..., [ν

s
t,ns

, 0], [νht,1, 0], ..., [ν
h
t,nh

, 0]

]′

(74)

Finally, the matrix F reads:

F =



















[

ỹMt−1, f̃t−1

]

︷ ︸︸ ︷

f̃11 f̃12

ν
f
t−1, ǫt−1

︷ ︸︸ ︷

0(5,3)

us
t−1,1, u

s
t−2,1

︷ ︸︸ ︷

0(5,2)

[· · · ]
︷︸︸︷

· · ·

us
t−1,ns

, us
t−2,ns

︷ ︸︸ ︷

0(5,2)

uh
t−1,1, u

h
t−2,1

︷ ︸︸ ︷

0(5,2)

[· · · ]
︷︸︸︷

· · ·

uh
t−1,nh

, uh
t−2,nh

︷ ︸︸ ︷

0(5,2)
f̃21 f̃22 0(12,3) 0(12,2) · · · 0(12,2) 0(12,2) · · · 0(12,2)

0(3,5) 0(3,12) 0(3,3) 0(3,2) · · · 0(3,2) 0(3,2) · · · 0(3,2)
0(2,5) 0(2,12) 0(2,3) fs

1 0(2,·) 0(2,2) 0(2,2) · · · 0(2,2)
...

...
...

. . .
. . .

. . .
...

. . .
...

0(2,5) 0(2,12) 0(2,3) 0(2,2) · · · fs
ns

0(2,2) · · · 0(2,2)
0(2,5) 0(2,12) 0(2,3) 0(2,2) · · · 0(2,2) fh

1 0(2,·) 0(2,2)
...

...
...

...
. . .

...
. . .

. . .
...

0(2,5) 0(2,12) 0(2,3) 0(2,2) · · · 0(2,2) 0(2,2) · · · fh
nh



















(75)

where ỹMt = [yMt , ..., yMt−4], and f̃t = [ft, ..., ft−11].

f̃11 =





φf

(1,1),1 φf

(1,1),2 0(1,3)
0 1 0(1,3)

0(3,1) 0(3,1) I3





(5,5)

(76)

f̃12 =





φf

(1,2),1 φf

(1,2),2 0(1,10)
0 0 0(1,10)

0(3,1) 0(3,1) 0(3,10)





(5,12)

(77)

f̃21 =





φf

(2,1),1 φf

(2,1),2 0(1,3)
0 0 0(1,3)

0(10,1) 0(10,1) 0(10,3)





(12,5)

(78)

f̃22 =





φf

(2,2),1 φf

(2,2),2 0(1,10)
0 1 0(1,10)

0(10,1) 0(10,1) I10





(12,12)

(79)

(80)

where φf,1 =

[

φf

(1,1),1 φf

(1,2),1

φf

(2,1),1 φf

(2,2),1

]

is the matrix coefficient of the first lag of equation (65),
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and φf,2 =

[

φf

(1,1),2 φf

(1,2),2

φf

(2,1),2 φf

(2,2),2

]

is the matrix of coefficients for the second lag. The matrices

fs
1 , ..., fs

ns
and fh

1 , ..., fh
nh

are defined as in Section A.1.

A.4 Computing forecasts and weights

Computing short-term forecasts in real-time from these models is straightforward. The future
values of the time series can be regarded as missing observations at the end of the sample periods.
The Kalman filter accounts for the missing data, which are replaced by forecasts. Particularly,
the k-period ahead forecasts are

ŷt+k|t = H∗
t ŝt+k|t (81)

with ŝt+k|t = F kŝt|t.
The Kalman filter allows to compute the weights or cumulative impacts of each indicator to

the forecast of GDP growth. The state vector st can be expressed as the weighted sum of available
observations in the past. Given a large enough t such that the Kalman filter has approached its
steady state, it holds that h-period ahead forecasts of GDP growth are approximately

yt+h =
∞∑

j=0

W ′
jyt (82)

in which Wj is a vector of weights to compute the cumulative weights of series i in forecasting
GDP growth as

∑∞
j=0Wj(i), where Wj(i) is the ith element of Wj .

A.5 Calculating annual GDP growth rates

While the forecasts from the Economist Poll of Forecasters and the Federal Government’s Expert
Group are already reported in annual GDP growth rates, the forecasts from the benchmark
models and the DFM have to be converted from quarterly to annual rates.

Suppose the quarterly levels of variable Xq,y in year 1 are X1,1, ..., X4,1 and similarly in year
2 X5,1, ..., X8,1. Then the annual average growth rate gX,annual calculated with levels is given by

gX,annual =
X5,1 +X6,1 +X7,1 +X8,1

X1,1 +X2,1 +X3,1 +X4,1
− 1 (83)

Each quarterly level can be expressed in terms of quarterly growth rates multiplied by the level
in the base quarter X0,0, for instance, X1,1 = g1 ×X0,0 and X2,1 = g2 × g1 ×X0,0. After some
algebra, the relationship between quarterly growth rates and annual average growth rates is
expressed by

gX,annual =

∑8
j=5

∏j
i=2 gi

1 +
∑4

j=1

∏j
i=1 gi

− 1 (84)

in which the quarterly growth rates of year 1 are referred to with g1, ..., g4, while the four quarters
of year 2 are labelled with g5, ..., g8.

A.6 Additional figures and tables

The models presented and discussed in the main text feature a series of estimated coefficients
of which only a few have been reported in the main text. Table 7 below lists the whole set of
estimated parameters for both models including the standard deviation and the ratio of the point
estimate and its standard deviation (∼ t-values) for each parameter. Figure 5 shows the variable
graphically.
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Figure 5: Monthly indicator series used in the model
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Note: See Table 1 for acronyms. Charts refer to data available on Friady 26/01/17.
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Table 7: Estimated Parameters

DSFM: ft ∼ AR(2) MS-DFM: ft ∼ MS

Estimate Standard ratio Estimate Standard ratio
Deviation Deviation

Factor loadings
GDP (γq) 0.06 0.02 2.6 0.10 0.03 3.8
PMI (∈ γs) 0.27 0.11 2.4 0.25 0.05 4.7
UBSc (∈ γs) 0.23 0.10 2.4 0.22 0.05 4.6
Imports (∈ γh) 0.02 0.01 2.3 0.07 0.01 4.9
Sales (∈ γh) 0.02 0.01 1.8 0.06 0.00 15.2
Spread (∈ γh) -0.06 0.02 -2.3 -0.15 0.05 -3.2
REER (∈ γh) -0.02 0.01 -1.7 -0.13 0.08 -1.6
Loans (∈ γh) 0.03 0.02 2.1 0.07 0.04 1.9
Orders (∈ γh) 0.14 0.05 3.0 0.08 0.03 2.5
Assets (∈ γh) 0.02 0.01 1.6 0.05 0.02 3.1
VSMI (∈ γh) -0.15 0.07 -2.2 -0.15 0.02 -7.6

Autoregressive coefficients
factor (ft) φf,1 1.49 0.21 7.3 - - -

φf,2 -0.55 0.19 -3.0 - - -
GDP φui,1 0.54 0.31 1.7 0.60 0.30 2.0

φui,2 -0.55 0.12 -4.5 -0.41 0.13 -3.2
PMI φui,1 0.73 0.07 11.0 0.77 0.06 13.0

φui,2 0.14 0.06 2.2 0.10 0.02 6.2
UBSc φui,1 1.06 0.06 16.4 1.14 0.10 11.0

φui,2 -0.21 0.06 -3.3 -0.22 0.05 -5.0
Imports φui,1 -0.61 0.05 -13.3 -0.61 0.06 -10.6

φui,2 -0.29 0.05 -6.4 -0.30 0.04 -7.6
Sales φui,1 -0.49 0.05 -10.5 -0.49 0.11 -4.7

φui,2 -0.23 0.05 -4.9 -0.22 0.09 -2.3
Spread φui,1 0.04 0.05 0.7 0.08 0.02 5.0

φui,2 -0.12 0.05 -2.4 -0.13 0.06 -2.2
REER φui,1 0.19 0.05 3.9 0.24 0.02 15.4

φui,2 -0.05 0.05 -1.1 -0.08 0.07 -1.1
Loans φui,1 -0.24 0.05 -5.1 -0.24 0.03 -9.4

φui,2 -0.15 0.05 -3.1 -0.13 0.03 -4.0
Orders φui,1 0.55 0.06 9.4 0.64 0.05 13.0

φui,2 0.16 0.05 3.2 0.21 0.05 4.3
Assets φui,1 -0.11 0.05 -2.0 -0.13 0.05 -2.5

φui,2 0.02 0.05 0.3 0.00 0.00 0.5
VSMI φui,1 0.97 0.08 12.7 1.04 0.07 14.4

φui,2 -0.27 0.10 -2.7 -0.30 0.08 -3.9

Variances
Revision error σ2

ǫ 0.34 0.12 2.9 0.35 0.11 3.3
GDP (σ2

q ) 0.71 0.05 13.8 1.37 0.21 6.4
PMI (∈ Σν) 0.30 0.01 21.5 0.59 0.09 6.8
UBSc (∈ Σν) 0.29 0.01 21.7 0.64 0.10 6.3
Imports (∈ Σν) 0.84 0.03 29.7 1.23 0.21 5.9
Sales (∈ Σν) 0.89 0.03 29.8 1.54 0.22 7.0
Spread (∈ Σν) 0.97 0.03 29.2 1.75 0.29 6.1
REER (∈ Σν) 0.98 0.03 29.8 1.75 0.76 2.3
Loans (∈ Σν) 0.96 0.03 29.6 1.61 0.45 3.6
Orders (∈ Σν) 0.59 0.02 26.4 1.49 0.13 11.5
Assets (∈ Σν) 0.99 0.04 26.4 1.67 0.29 5.7
VSMI (∈ Σν) 0.46 0.03 15.4 0.80 0.07 12.2

Markov-switching coefficients
µ(ζt = 0) - - - 0.27 0.06 4.6
µ(ζt = 1) - - - 2.94 0.46 6.3

p00 - - - 0.98 0.18 5.4
p11 - - - 0.86 0.19 4.6

Note: See Table 1 for acronyms, data transformation and a description of these indicators.
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