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Abstract

In this paper we analyze the role of ethnic networks in the location decision

of migrants to the EU-15 at the regional level. Using a random parameters

logit specification we find a substantially positive effect of ethnic networks

on the location decision of migrants. The effect is, however, decreasing

in network size. Furthermore, we find evidence of spatial spillovers in the

effect of ethnic networks: ethnic networks in neighboring regions signif-

icantly help to explain migrants’ choice of target regions. The positive

effects of ethnic networks thus also extend beyond regional and national

borders. Analyzing the trade-off between potential income and network

size, we find that migrants would require a sizable compensation for liv-

ing in a region with a smaller ethnic network, especially when considering

regions where only few previous migrants from the same country of origin

are located.
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1 Introduction

Previous research has shown that migrants’ choice of location within a country

can be explained by differences in economic opportunities across regions (like

higher wages or a higher probability of finding employment, see Davies et al.,

2001) or by some regions or cities being “natural hubs” for migrants (they act

as “ports of entry” into a country because of infrastructure endowments like

sea- or airports or administrative institutions like central immigration offices).

But these factors cannot fully explain the observation that migrants tend to

settle where other migrants of the same ethnicity migrated before, resulting in

a geographic concentration of migrants with similar ethnicity in specific loca-

tions. Since a seminal study on ethnic migrant concentration in the U. S. by

Bartel (1989), several studies have formulated hypotheses explaining migrant

concentrations theoretically (see Massy et al., 1993, for an overview of some

earlier work, or Carrington et al., 1996; Gross and Schmitt, 2003; and Chiswick

and Miller, 2005) and have identified the importance of ethnic networks for the

location decision of migrants (see Zavodny, 1999; Bauer et al., 2000; Gross and

Schmitt, 2003; Åslund, 2005; Pedersen et al., 2008; Damm, 2009a). Other stud-

ies have highlighted the role of ethnic networks for employment and earnings

opportunities or educational attainment (see Cutler and Glaeser, 1997; Munshi,

2003; Cardak and McDonald, 2004; Chiswick and Miller, 2005; Damm, 2009b,

to name just a few) or the role of “ethnic capital” in determining economic

performance (see Borjas, 1992, 1995).

However, most of the previous literature has focused only on local networks

and has not considered the spatial structure of networks in and around a region.

But the positive effect of a network may not be limited to regional borders:

newly arriving migrants can also benefit from networks in neighboring regions by

gaining information on labor market opportunities in these neighboring regions,

or by the provision of ethnic goods produced in other regions. Furthermore,

some ethnic goods might be provided only for migrants in a certain region if

the network size in adjacent regions and in other regions of the country is large

enough. Larger networks can thus also be associated with a higher variety of

ethnic goods.

We thus contribute to the existing literature by considering not only the size

of the local ethnic network as a determinant of migrants’ location choice, but

also the size of the ethnic network in neighboring regions and other regions of

the host country. This is, to the authors’ best knowledge, the first article to

date which explicitly incorporates this form of spatial heterogeneity in the effect

of ethnic networks on migrant’s location choice.
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Second, we contribute to the existing literature on ethnic networks and the

location choice of migrants by analyzing location choice at the regional level

for European countries, while other studies deal with this topic either at the

national level (Pedersen et al., 2008; Geis et al., 2008) or focus on the regions

of a single country (Bartel, 1989; Åslund, 2005; Damm, 2009b). Third, we

examine the trade-off between income and ethnic network size and provide a

first approximation of the compensating variation for changes in the ethnic

network size. Fourth, we derive an empirical estimate of the optimal ethnic

network size for migrants in the EU.

As in previous empirical studies (e. g., Davies et al., 2001; Christiadi and

Cushing, 2008) the location decisions are estimated at the individual level using

a discrete choice model based on random utilities. If our hypothesis is true and

networks in neighboring regions matter for the location decision, the indepen-

dence from irrelevant alternatives property is violated, and the commonly used

conditional logit model (McFadden, 1974) is no longer applicable. We there-

fore follow Gottlieb and Joseph (2006) and apply the more suitable random

parameters (mixed) logit framework (see McFadden and Train, 2000).

Based on 2007 data from the European Labour Force Survey our empirical

analysis shows that the probability of moving to a region depends not only on

the local ethnic network but also—albeit to a smaller extent—on the ethnic

network in adjacent regions and other regions of the same country. Ignoring

the effects of networks in neighboring regions thus overestimates the effect of

network size in the host region and leads to biased results. Besides this, we find

the expected effects of economic attributes like region size or regional income

and unemployment on the location decision of migrants. Deriving the trade-off

between income and ethnic network size, we are able to calculate the Euro value

of a variation in ethnic networks. Our results show that ethnic networks are

highly important for the location decision, and that migrants would require a

sizable compensation for moving to a region with a smaller ethnic network.

2 Literature review

One of the most frequently cited theories explaining ethnic migrant clusters is

that migrant networks produce positive externalities for members of the same

ethnic group, so that the costs of migration decrease with the number of previous

migrants: networks can provide help with the settlement process, decrease the

perceived alienation in the host country (Bauer et al., 2000) or provide financial

assistance (Munshi, 2003). Furthermore, networks can provide their members

with ethnic goods like food, clothing, social organizations, religious services,

media (radio, newspapers, etc.) or marriage markets (Chiswick and Miller,
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2005), and the provision of these ethnic goods can be expected to increase with

the stock of migrants with similar ethnic background. This creates an externality

which provides incentives for other immigrants to settle in regions where they

can enjoy a larger supply of ethnic goods. If there are economies of scale in

the production of ethnic goods (as can, for example, be expected for religious

services or media), geographic concentration facilitates the supply of these goods

at lower prices and reduces the costs of living (especially if ethnic goods make

up a large part of the consumption basket), which attracts more immigrants

to move into this region even if they could earn a higher wage somewhere else

(Chiswick and Miller, 2005).

Ethnic networks also provide information externalities: by being in contact

with previous migrants, new arrivals can benefit from a better availability of

information on employment opportunities which increases their labor market

prospects (Gross and Schmitt, 2003). New arrivals can also benefit from job

referrals by more established members of the network (Munshi, 2003). Further-

more, if employers with migration background prefer to employ other migrants

of similar ethnic origin instead of natives (Andersson and Wadensjö, 2007), a

separate migrant labor market can emerge which can even sustain a higher wage

than the larger “general” labor market (Gross and Schmitt, 2003).1

A variety of empirical studies in the literature support the network migration

hypothesis and find positive effects of ethnic networks on the location decision

of newly arrived migrants. However, most of the previous work focuses on

the U. S., while there are only few studies covering European countries. Two

notable exceptions are Pedersen et al. (2008), who estimate the determinants

for migration flows to 22 OECD countries and find a robust and sizable effect of

ethnic networks on migration flows, and Geis et al. (2008), who found networks

to have a positive (but decreasing in network size) effect on migrant’s choice

between four OECD countries (France, Germany, United Kingdom, and the

U. S.). Other studies on European countries take a single-country perspective:

focusing on Denmark, Damm (2009a) showed that the relocation hazard of

refugees randomly assigned to a municipality during the Danish spatial dispersal

policy is lower for those assigned to a municipality with a higher percentage of

co-nationals, while Åslund (2005) found similar effects for immigrants to Sweden

1Edin et al. (2001) found empirical support for a positive effects of ethnic networks on
migrant earnings. In an analysis of Mexican migrants in the U. S., Munshi (2003) provides
evidence that networks not only increase the probability of employment, but also help to
channel network members into higher paying occupations. (Bartel, 1989, p. 388), on the
other hand, showed that clustering negatively influences the economic success of migrants. One
explanation for this is that migrant clusters are negatively correlated with foreign language
fluency (Lazear, 1999), which is in turn a prerequisite for entering the host country’s labor
market (see also Bauer et al., 2005). Damm (2009b) concludes that the positive effects of
ethnic networks more than outweigh the negative effects, and that all things considered living
in a region with a larger ethnic network has a positive effect on wages.
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subject to the “Whole of Sweden Strategy” as well as a preference of migrants for

regions with larger ethnic networks before the implementation of the strategy.

While there is strong evidence that ethnic migrant networks have a positive

effect on the location decision, there can also be negative effects on the util-

ity of both previous migrants (Heitmueller, 2006) and prospective new arrivals:

continuing migration reduces the income differentials between sending and re-

ceiving countries and the wages of migrant cohorts. A similar effect will arise if

housing prices increase following an influx of migrants into a region. This neg-

ative effect of decreasing wages and/or increasing housing prices will at some

point dominate the positive network externality effect, leading to a decline in

the attractiveness of a formerly popular ethnic cluster (Portnov, 1999). There

will thus be an optimal size of the regional network beyond which every new

migrant decreases the utility of previous migrants already living in the region.

If prospective emigrants take this into consideration when deciding where to

locate, an inversely U-shaped effect of network size on the probability of moving

to a specific region can arise (Bauer et al., 2002).2

As an alternative to network effects, Epstein (2002) and Bauer et al. (2005)

argued that herd behavior can constitute another explanation for the creation

of ethnic clusters in specific regions. Herd migration occurs if there is imperfect

information as to which among alternative target locations provides the highest

utility. If a potential migrant observes only the outcome of previous migrants’

destination choices, but not the “signal” that determined their choice, she might

discount her private information about alternative target regions and follow the

flow of previous migrants in the belief that they must have had information not

available to her.3

3 Data and econometric framework

In the empirical analysis we will test for the importance of ethnic networks in

the location decision of migrants in Europe. The data on migrants and eth-

nic networks used in the empirical analysis is taken from a special evaluation

2Local ethnic networks can, however, still grow beyond this optimal size if the region still
provides a higher utility compared to all other available regions, even if new migrants take
into account that their utility will decrease with every other migrant that follows (Bauer et al.,
2002; Heitmueller, 2006).

3Herd behavior can lead to inefficiencies if previous migrants also discounted their private
information in the belief that those who went there before them had information they do
not have, while they could have gained a higher utility by following their private information
(which must, however, not be the location with the objectively best conditions either). Herd
behavior and network effects are—although conceptually different—not mutually exclusive:
both effects can exist simultaneously and determine the location decisions of migrants. The
presence of network externalities in this context can even increase the probability that herd
behavior will be observed (Epstein, 2002).
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of the 2007 European Labour Force Survey (EU-LFS). The EU-LFS is a regu-

lar questionnaire surveyed among a representative sample of households in all

countries of the EU-27. The special evaluation of the 2007 EU-LFS available

to us provides not only information on the region of residence (at the NUTS-2

level), but also detailed information on the nationality and the country of birth

of individuals living in the EU. We use country of birth to define ethnicity (so

all individuals born in the same source country are assumed to belong to the

same ethnic group) and consider all individuals born outside their country of

residence to be “migrants”.

The data allow us to differentiate between those who moved during the last

10 years (between 1998 and 2007) and those who have been living in the same

country for more than 10 years. The location choice is only modeled for those

who migrated between 1998 and 2007 still living in their host country at the time

of the interview (there is no information on repeat and return migration). We

focus on the 15 EU member states as of 1998, but due to missing information on

the country of birth for Germany and Ireland only 13 can be considered as host

countries.4 Although the EU-LFS is a survey, the detailed survey information

is not available to us, so observations are weighted according to the weight

attached to them in the LFS. The data is thus used like administrative data

in grouped regressions. All in all, we model the location decision of 8,988,710

migrants age 15 or older from 166 different countries who migrated to the 13 EU

countries considered during the 1998–2007 period. We assume that a migrant

k’s choice set R consists of 158 NUTS-2 regions in these 13 countries5 and that

this choice set is exhaustive.6

3.1 A random utility approach to location choice

To model the location decision of migrant k, a random utility framework can be

applied (Marschak, 1960) where each region r ∈ R yields a region-specific utility

Ukr. We impose the simple behavioral model of a utility-maximizing decision

4Austria, Belgium, Denmark, Finland, France, Greece, Italy, Luxembourg, the Nether-
lands, Portugal, Spain, Sweden and the United Kingdom.

5Overseas territories as well as the Spanish exclaves Ceuta and Melilla are not considered.
The same holds true for the relatively remote Canary Islands and the Azores and Madeira
island regions. Åland (Finland) as well as the Highlands and Islands and North Eastern
Scotland regions in the U.K. must be excluded because of lacking data. Because of data
restrictions, Denmark is treated as a single NUTS-2 region and Serbia, Montenegro and the
Kosovo are considered a single source country.

6The choice of migrating vs. staying in the home country is not modeled because this would
imply both modeling the choice of all “stayers” in all source countries as well as modeling the
choice of all migrants from all source countries to all other countries. Since this is practically
infeasible, it is assumed that migrants have already decided to migrate to the 13 EU countries
under investigation and then choose a location from among the 158 regions in these countries.
Migrants moving between the 13 host countries are also excluded, because for them the regions
of their home country would be included in the choice set R while they would actually not be
allowed to choose one of these regions because they would then not be regarded as migrants.
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maker: migrant k chooses alternative s ∈ R if and only if Uks > Ukr ∀ s 6= r.

Because the decision maker’s utility is not known, observable characteristics

of the alternatives Xkr can be used to define the representative utility Vkr =

V (Xkr) ∀ r which is a function of alternative-specific variables like measures

for ethnic networks in r and in adjacent regions. Assuming that representative

utility is linear in the attributes of the alternatives, the utility function is given

by

Ukr = Vkr + εkr = β′Xkr + εkr (1)

εkr is unknown and treated as random. The final outcome can thus only be

predicted in terms of probability.

3.2 Ethnic networks

Our main variable of interest to be included in Xkr is the size of the ethnic

network. For a migrant in ethnic group j, ethnic network size in a specific

region s (the local ethnic network in region s) is defined as

Networkjr =
m10+

js

M10+
j

where M10+
j =

∑R
r=1 m10+

jr is the sum of migrants of ethnic group j who have

been living in all regions for more than 10 years. Our network variable thus

measures the proportion of migrants of the same ethnicity who have been living

in region s for at least 10 years relative to all migrants of the same ethnicity who

have been living in the 13 EU countries considered for at least 10 years. This

definition assumes that migrants are mostly interested in the region which hosts

the largest ethnic network, irrespective of its absolute size.7 As the summary

statistics of table 1 show, the average network size is 6.7 %, but network size

can vary from zero to 100 percent. Because the marginal utility of networks can

decrease with network size the squared network variable is also included in the

regression.

As outlined in the introduction, the positive effect of ethnic networks does

not necessarily end at the region’s border. E. g., ethnic goods can also be con-

7This definition is chosen because the absolute network size does not take the total popu-
lation of an ethnic group into consideration: if a region hosts a network of 1.000 migrants of
ethnic group A and 10.000 migrants of ethnic group B, the region would be considered more
attractive for members of B than for members of A. But if the total number of migrants from
ethnic group A in all regions is only 2.000 while the total population of ethnic group B in
all regions is 200.000, the region would clearly be of higher importance to members of group
A than members of group B. The relative network size takes this into account and places a
higher weight on the region for members of group A (network size: 50 %) than for members
of group B (network size: 5 %). Section 5.1 relaxes this assumption and estimates the model
using absolute network size.
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sumed by individuals living in neighboring regions, or migrants could live in one

region and commute to work in a neighboring region where the ethnic network

will help them find employment. If there are spatial spillovers, the individual

may not only be concerned with local network size in his intended target re-

gion, but also with the size of the ethnic network in neighboring regions. We

therefore also include the sum of the ethnic networks in neighboring regions as

an additional variable in the regression:

NetworkN1

js =

∑Ls

1

ls
1
=1 m10+

jls
1

M10+
j

with Ls
1 ⊂ R the set of regions sharing a border with region s. Furthermore,

we also include the sum of the networks in second neighbor regions Ls
2 (the

neighbors of the Ls
1 regions, except s and regions summarized in Ls

1):

NetworkN2

js =

∑Ls

2

ls
2
=1 m10+

jls
2

M10+
j

To the authors’ best knowledge this is the first article to date which explic-

itly incorporates this form of spatial heterogeneity in the context of migrant’s

location choice.8

If there are ethnic goods with strong economies of scale in production which

must be provided at the national level to be produced efficiently, the total

network in the host country also affects the location decision. We therefore also

include the sum of the ethnic networks in the rest of the host country (Ls
C):

NetworkNC

js =

∑Ls

C

ls
C

=1 m10+
jls

C

M10+
j

We thus consider network effects both at the regional as well as the national

level. For networks in neighboring regions we differentiate between neigboring

regions in the same country and adjacent regions in neighboring countries. While

the set Ls
1 contains only neighboring regions within the same country, adjacent

regions in neighboring countries are included in an alternative set L′s
1 with the

size of the ethnic network in regions L′s
1, NetworkN ′

1

js , defined as above. The same

applies to ethnic networks in second neighbor regions of neighboring countries,

NetworkN ′

2

js .

8We focus on the spatially lagged network of migrants who moved into the region more
than 10 years ago (which is exogenous in the regression), and not so much on spatially con-
temporaneous dependence (i. e., spatial lags or spatial errors, see Anselin, 2006), as it will take
some time for a new arrival to provide things like ethnic goods or information externalities to
other members of the network. Besides, there are (to the best knowledge of the authors) no
estimators allowing for contemporaneous spatial dependence in models of this kind.
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A priori it can be expected that these variables affect the location choice

of migrants at a lesser extent, if at all. Migrants of the same ethnicity living

in adjacent regions of a neighboring country will not be able to help with im-

migration issues and bureaucratic structures because of national differences in

migration regimes and procedures. Furthermore, labor and housing markets in

different countries are subject to different laws, making positive network exter-

nalities rather unlikely. National borders will, however, play a lesser role for

the consumption of ethnic goods because there are no restrictions on trade and

cross-border mobility among EU countries. If significant, the coefficients can, in

comparison with their within-country counterparts, provide information about

border effects in network externalities.

[Table 1 about here.]

3.3 Other explanatory variables

Our choice of other explanatory variables included in Xkr follows other studies

on this topic (see Bartel, 1989; or Davies et al., 2001). Two types of variables will

be added to the regression: variables which are specific to the region or country

of residence, as well as country-pair specific variables. As will become obvious

from the discussions in section 3.4, variables specific to the source countries

(such as unemployment or wage levels, or sending country fixed effects) cannot

be considered in the regressions because they do not vary over alternatives. The

same holds true for individual characteristics like age or gender.9

Among the region specific Xkr attributes assumed to influence the proba-

bility of moving to a region is the area (measured in 1,000 km2): even if there

is a completely uniform distribution of migrants across all regions, larger re-

gions are more likely to attract larger inflows of migrants. A similar argument

can be made for the population (in 100,000): after controlling for region size

(area), regions with a higher population share should also attract a higher share

of migrants. To control for differences in economic opportunities, we include

the unemployment rate (in percent) as well as the average annual income per

employee (in e 1,000). Data on population and unemployment (in 2006) as

well as average annual income (in 2004) are taken from Eurostat. Regional

unemployment rates ranged from 2.3 to 20.2 % in 2006 with an average unem-

ployment rate of 7.3 % (see table 1). The average annual income per employed

person was e 27,300, and ranged from e 10,600 (“Centro” region, Portugal) to

e 100,000 (Inner London, UK). We also include a dummy variable for regions

9These variables could only be included by interacting them with all other variables in
the model. However, because of technical and practical limitations on the number of random
parameters which can be estimated in a random parameters logit model (see section 3.4), the
scope for including individual variables is rather limited and will be left to future research.
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which comprise national capitals. Capitals can be expected to receive a ceteris

paribus higher share of migrants because they are the cultural, political and

administrative centers of the respective countries. We expect a negative effect

of the unemployment rate and a positive effect of average annual income on the

probability of choosing a specific region. To control for national differences in

laws regarding immigration, labor market access as well as other country-fixed

effects, dummies for the receiving countries are included (see also Davies et al.,

2001).10

Among the country-pair specific Xkr attributes we include a dummy variable

for linguistic closeness taken from CEPII which measures whether a migrant’s

home and host country share an official language (1, zero otherwise). A common

language not only reduces the costs of migration considerably (see Pedersen

et al., 2008), but it can also raise the returns-to-skill in the host country (Grogger

and Hanson, 2008). We also include a neighborship dummy which is 1 if the

host and home countries share a common border, and zero otherwise. Again,

a positive effect can be expected because a common border facilitates not only

legal, but also illegal immigration and can thus lead to ceteris paribus higher

migration. (Former) colonial ties between two countries can also affect the

location choice of migrants. Data on colonial relationships are also available

from CEPII and we include a dummy variable capturing whether two countries

were in a colonial relationship after 1945 (= 1, zero otherwise). To proxy for

the costs of migration (or the costs of visiting relatives at home), the distance

(in 1,000 km, as the crow flies) between the capital of the migrants’ country of

origin and the geographical center of the region she lives in and squared distance

are also included. For distance, a negative (but possibly decreasing) effect can

be expected.

Representative utility Vkr is thus assumed to be a linear function of host

region specific variables (ethnic networks, area, population, average income,

unemployment, capital city dummy variable), host country specific variables

(country dummies) as well as country-pair specific variables (common official

language, common border, colonial ties after 1945, distance). These determi-

nants can be used as explanatory variables to estimate the location choice of

migrants. Descriptive statistics for the independent variables are summarized

in table 1.
10Although including alternative specific dummy variables is more common in applications

of this kind, we include only country specific dummy variables, mainly because of practical
reasons: with 158 alternatives, we would have to consider 157 dummy variables, which would
not only increase the number of parameters to be estimated considerably, but can also lead
to problems with achieving convergence when estimating the model. Furthermore, because
in the European Union laws regarding immigration and labor market access—which can be
considered decisive for immigrants—do not vary within countries, we believe that country
dummies are sufficient to estimate alternative specific fixed effects.
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3.4 Econometric method

Assuming that the random utility term εkr in equation (1) is i.i.d. extreme

value, the probability that individual k chooses location s could be estimated

by a conditional logit (CL) model (McFadden, 1974).11 As is well known, in

the conditional logit model the odds ratio between two alternatives s and t

depends only on the characteristics of s and t and not on the availability or

characteristics of other alternatives, a property known as “independence from

irrelevant alternatives” (IIA):

Pks

Pkt

=
exp (β′Xks)/

∑R
r=1 exp (β′Xkr)

exp (β′Xkt)/
∑R

r=1 exp (β′Xkr)
=

exp (β′Xks)

exp (β′Xkt)
(2)

While IIA has some advantages if satisfied, it will be violated if there are spatial

spillovers of ethnic networks: if this is the case, the probability of choosing a

specific region s not only depends on the characteristics of s, but also on the

characteristics of a set of neighboring regions R(s) = {Ls
1, L

s
2, L

s
C , L′s

1, L
′s
2} ⊂ R.

Similarly, the probability of choosing another region t will not only depend

on the attributes of this region but also on the attributes of a subset R(t) =

{Lt
1, L

t
2, L

t
C , L′t

1, L
′t
2} ⊂ R of t’s neighbors. The odds between s and t are then

given by
Pks

Pkt

=
exp

(

β′
1Xks + β′

2XkR(s)

)

exp
(

β′
1Xkt + β′

2XkR(t)

)

which violates the IIA property: the ratio of the probabilities no longer depends

on the characteristics of s and t alone, but also on the characteristics of the

regions in R(s) and R(t).12

This calls for a model which does not exhibit the IIA property. Probably the

most flexible model is the random parameters logit (RPL, also called mixed or

random coefficients logit, see McFadden and Train, 2000; Hensher and Greene,

2003; Train, 2009, and the references contained therein for an overview).13 Al-

though the random parameters logit framework goes back to the early 1980’s

(among the first applications are Boyd and Mellman, 1980, and Cardell and

Dunbar, 1980) and recent advances in simulation techniques (foremost, the use

of Halton draws, see below) and computing power have made its estimation

more practicable, applications of the random parameters logit model are still

11See also Bartel (1989), Bauer et al. (2000, 2002, 2005), Gottlieb and Joseph (2006), Jaeger
(2007) or Christiadi and Cushing (2008) for related applications of the conditional logit.

12Including the network size of neighboring regions is thus also a test for IIA in our model
of location choice (see also Train, 2009, p. 49).

13A probably more common alternative model which relaxes the IIA assumption is the
nested logit model. However, while nested logit does not impose IIA between nests, alterna-
tives within a given nest are still assumed to exhibit independence from irrelevant alternatives.
The model is thus less flexible than the random parameters logit and therefore not considered.
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scarce in migration research (one notable exception is the paper by Gottlieb and

Joseph, 2006).

The random parameters model can be derived from utility-maximizing be-

havior by allowing the parameters of the characteristics Xkr in the representative

utility function to vary over individuals:14

Ukr = β′
kXkr + εkr

In this utility function, βk is a vector of coefficients for individual k representing

k’s preferences. The utility function is thus heterogeneous across individuals,

and the coefficient of a regional characteristic can not only have a different

magnitudes for different individuals, but also a different sign. The coefficients

in βk are assumed to vary over decision makers with density f(β|θ), where θ are

the parameters describing the density of β. As in the conditional logit model,

εkr is assumed to be i.i.d. and follow an extreme value distribution. If the βk’s

were known, the probability of choosing a specific region s would be given by:

Lks(βk) =
exp (β′

kXks)
∑R

r=1 exp (β′
kXkr)

(3)

However, because the βk’s are unobserved and we can therefore not condition

on β, the probability of choosing s is the integral of Lks(βk) over all possible

values of βk (Train, 2009, p. 138):

Pks =

∫

(

exp (β′
kXks)

∑R
r=1 exp (β′

kXkr)

)

f(β|θ)dβ (4)

The probability Pks in the random parameters logit is thus the weighted average

of the logit formula evaluated at different values of β, with the weights given

by the mixing distribution f(β|θ). Because the integral in (4) does not have a

closed form solution, it must be approximated through simulation. Simulation

is based on drawing a value of β from f(β|θ) and using this draw to calculate

the logit probability in (3). This step is repeated many times, and the average

computed value of Lks(βk) gives the simulated probability P̌ks which can be

inserted into the simulated log likelihood

SLL(θ) =

K
∑

k=1

R
∑

s=1

yks ln P̌ks (5)

14An alternative interpretation of the random parameters logit is based on the error compo-
nents creating correlations among utilities for different alternatives, which is formally equiva-
lent to this interpretation, see Train (2009), p. 139f.
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The maximum simulated likelihood estimator is the value of θ that maximizes

the simulated log likelihood (see Train, 2009, 144) and can be estimated for

example in the STATA statistics package using the estimator by Hole (2007).

The mixing distribution in the random parameters logit f(β|θ) can be nor-

mal, lognormal, uniform, etc. If the parameters are assumed to be normally

distributed, the estimated θ are the mean and standard deviation of a normal

distribution which describe the distribution of a parameter in the population.

In our econometric model we follow Gottlieb and Joseph (2006) by specifying

some coefficients as fixed and the rest as normally distributed.15 A fixed pa-

rameter is essentially a parameter whose standard deviation is zero (Hensher

and Greene, 2003), and for which only a mean will be estimated. We assume

the coefficient of area (in 1,000 km2) to be fixed and the same for all individu-

als: if migrants were evenly distributed across space, larger regions would have

a ceteris paribus higher probability of being chosen, independent of individual

tastes. The country-specific dummy variables are also treated as being fixed.16

All other coefficients are unrestricted and assumed to be normally distributed.17

The estimated parameters θ for these coefficients are thus the mean and standard

deviation of a normal distribution. This also allows us to calculate the area of

the density function f(β|θ) which is below and above zero. As mentioned above,

in the random parameters logit a coefficient is not necessarily positive or neg-

ative for all individuals. If part of the area of f(β|θ) is below zero, a variable

constitutes an attractor for some, and a repellent for other individuals.

Our simulation uses quasi-random Halton sequences (Halton, 1960), which

is considered more effective than simulation based on random draws (see Bhat,

2001; Train, 1999; Hensher, 2001). Train (2009, p. 230) notes that “[. . . ] a

researcher can expect to be closer to the expected values of the estimates us-

ing 100 Halton draws than 1000 random draws”. Although there is no general

agreement on the number of Halton draws to be used to achieve stable parame-

ters, Hensher and Greene (2003, p. 154) note that models with a small number

of alternatives and random variables can “produce stability with as low as 25”

15Revelt and Train (1998) and Train (1999) cite Ruud (1996) showing that random param-
eters logit models have a tendency to be unstable when all coefficients are treated as random.
Therefore, some coefficients should be fixed.

16Although heterogeneity of tastes can be expected as regards to individual’s preferences for
single countries, the maximum dimension of the Mata routine to generate the Halton draws
in the STATA statistics package (see Drukker and Gates, 2006) is 20, so that no more than
20 unrestricted coefficients in β can be estimated.

17Although sign restrictions could be imposed by specifying some of the coefficients as being
lognormally distributed—for example, the coefficient of income can be expected to be positive
for all individuals, although its magnitude may vary between decision makers—we specify
the random parameters to be normally distributed to make our model as flexible as possible.
Furthermore, lognormal distributions usually have a long right-hand tail, which might be
problematic in calculations of the willingness-to-pay or the compensating variation because it
often leads to unrealistic mean values (see Hensher and Greene, 2003, for a discussion). The
use of the log-normal distribution is also discouraged by Sillano and Ortúzar (2005).
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Halton draws per observation, and that “100 appears to be a ‘good’ number”.

However, the number of required draws will be higher the more complex the

model (Hensher and Greene, 2003, p. 154), so that these results cannot be gen-

eralized. We use 500 Halton draws for the simulation of the random parameters

logit model.18

4 Results

Table 2 shows the results of the random parameters logit regression estimating

the location choice of those migrants who migrated to the 13 host countries

considered between 1998 and 2007. In addition to the mean and standard devi-

ation of the estimated random parameters which define the normal distribution

of the coefficients in the population, table 2 also shows the proportion of this

normal distribution which above zero (i. e., the percentage of the population

for which the parameter is positive). The fifth column gives the exponentiated

coefficients of the random parameters logit, which can be interpreted as mean

odds ratios. Finally, the last two columns give the coefficients and odds ratios of

a conditional logit regression. Although the conditional logit’s IIA assumption

is violated if our hypothesis of spatial spillovers in network effects is correct, the

conditional logit can still serve as an approximation to a model which relaxes

this assumption (cf. Dahlberg and Eklöf, 2003).19

[Table 2 about here.]

The results of the random parameters logit support our hypotheses: not only

does a larger ethnic network attract more migrants to a region, the estimated

probability of choosing a specific region also increases with ethnic networks in

neighboring regions. All else equal, at the mean parameter value the odds of

choosing a region are 45.6 % larger if the total share of individuals from the

same ethnic background in the region increases by 1 percentage point (p. p.).

The effect of network size is, however, decreasing, as indicated by the negative

effects of the squared network variable. This lends support to the optimal

network size hypothesis beyond which the attractiveness of a region declines

(see section 4.2). Furthermore, at the mean parameter value the odds ratio is

18Halton sequences are usually defined in terms of a prime number. For the simulation of an
integral of dimension ι (where the dimension is equal to the number of random parameters),
the first ι prime numbers are conventionally used to create ι sequences (Cappellari and Jenkins,
2006). Because the initial elements of the sequences can be highly correlated across dimensions,
Train (2009, p. 227) recommends to discard at least the the first κ elements, where κ should
be as least as large as the prime number used in the ι’th dimension. Because our model uses
16 random parameters, the first 53 elements are dropped. The model was also estimated using
100, 200, 300 and 400 Halton draws. The parameters tend to stabilize after using 300 draws.

19Country fixed effects are not reported in table 2 due to lack of space. The country fixed
effects of the random parameters estimations are reported in table A2 in the appendix.
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5.3 % larger if the ethnic network in neighboring regions increases by 1 p. p., and

even a 1 p. p. increase in the ethnic network of second neighbors is still associated

with a change in the relative odds of 3.7 % at the mean parameter. Networks in

the rest of the country also play a role for the location decision, but the effect

is rather small. Ethnic networks in neighboring regions of other countries also

affect the location decision positively, but the estimated coefficients are smaller

than for within-country neighbors, which points to substantial border effects in

the influence of ethnic networks.

Excluding the spatially lagged network size variables increases the (mean of

the) coefficient of the local network variable from 0.376 to 0.651 and reduces the

coefficient of the squared network variable from −0.017 to −0.044 in a RPL re-

gression. This indicates that the effect of local ethnic networks is overestimated

if spatially lagged network size is ignored, leading to biased results.

The random parameters logit also shows that ethnic networks are an at-

tractor for all individuals: 100 % of the normal distributions of most estimated

coefficients are above zero. The only exceptions are the coefficient of the size

of the ethnic network in the rest of the country, which is negative for about

23.1 %, as well as the parameter of network size in second neighbors of another

country, which is negative for a small proportion of migrants. In addition, for

about 10.2 % of migrants the coefficient of the squared network term is positive,

indicating that the utility of the individuals increases exponentially with ethnic

network size.

Concerning the other variables, the RPL regression shows that migrants

ceteris paribus prefer regions with more inhabitants, lower unemployment rates

and higher average income. The effect of regional size is negative, but rather

negligible in both specifications. As expected, distance—our proxy for the costs

of migration—has a negative, but decreasing effect on the location decision.

A common official language increases the odds of choosing a specific region,

but only for about three quarters (75.4 %) of the migrants. A past colonial

relationship between the source and target countries on the other hand affects

location choice negatively for most migrants, but about 11.0 % of the migrants

to the 13 EU countries considered actually derive a positive utility from living

in a region of the former colonizer.

Comparing the results of the random parameters to the conditional logit

regression shows that the differences between the mean RPL estimates and the

conditional logit are quite substantial for some coefficients, especially those of

the network size variable and parameters with a high degree of heterogeneity in

the population (such as the capital, common border, and colonial relationship

dummies). The evidence provided in this paper does thus not lend support to the

hypothesis that a CL model can be used as an approximation to the RPL model
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which relaxes the IIA assumption, but rather shows that imposing a conditional

logit (which implies fixed coefficients) on a empirical model characterized by a

high degree of heterogeneity in the coefficients can lead to a severe bias. For

example, regions with capital cities exert a positive influence on the location

decision of only about 30.0 % of migrants, and the odds ratio of the capital

dummy variable is considerably smaller in the RPL than in the CL regression. In

another example, a common border has a positive effect on the location decision

in the CL model, while the mean RPL estimate is negative: only 46.1 % prefer

regions in neighboring countries.

4.1 Compensating variation

The ratio of two parameters in a logit model can be used to calculate the trade-

off between two variables x1kr and x2kr (see Davies et al., 2001; Train, 2009).

Setting the total derivative of the logit probability to zero and solving for the

change in x1kr that keeps the probability of choosing region r constant following

a change in x2kr yields:

dx1kr

dx2kr

∣

∣

∣

∣

dPkr=0

= −
β2kPkr(1 − Pkr)

β1kPkr(1 − Pkr)
= −

β2k

β1k

(6)

Using a cost or income measure as x1kr this trade-off can be interpreted as

the willingness-to-pay or compensating variation (CV, see Dahlberg and Eklöf,

2003; Sillano and Ortúzar, 2005): if x1kr is income, the ratio gives the amount

of money which would compensate an individual for a increase in x2kr by one

unit. If both parameters are positive, the compensation for an increase in x2kr

is negative, as expected.

The ratio in (6) can be used to calculate the amount of income which would

compensate an individual for moving to a region with a smaller ethnic network

or, equivalently, the amount of income the individual would be willing to forgo

in order to live in a region with a larger ethnic network. Because the parameters

in the RPL are random variables which vary across the population with density

f(β|θ) we follow Sillano and Ortúzar (2005) and calculate the compensating vari-

ation from the individual-level parameters derived from the simulation model

(see Train, 2009). Migrant k’s compensating variation for a change in the size

of the ethnic network can then be calculated as

CVk(Networkjs) = −
γ1k + 2γ2kNetworkjs

µk

where γ1k is individual k’s coefficient of the network variable, γ2k her coefficient

of the squared network variable and µk her coefficient of the average income
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variable. The compensating variation therefore depends on the size of the net-

work, and will decrease with network size if the squared network parameter is

negative (as is the case for about 90 % in our sample, see table 2). Table 3

shows the compensating variation calculated from individual level parameters

at different network sizes as well as the calculated compensating variation for

ethnic networks in neighboring regions and the rest of the country. They give

the amount of annual income an individual would require as compensation for

moving to a region where the ethnic network is 1 p. p. smaller.

[Table 3 about here.]

The calculation based on individual level parameters reveals a sizable com-

pensating variation at small network sizes: the amount which would compensate

an individual for a 1 p. p. lower network size is, on average, about e 21,600 at

a network size of 1 %. Thus, when choosing between two otherwise equivalent

regions where one region has a network size of 1 % and the other a network

size of 0 %, the probability of moving to these regions would only be equal

to the individual if the expected annual income in the region without an eth-

nic network is e 21,600 higher than the expected income in the other region.

This compensating variation is only slightly lower than the mean average an-

nual income per employee in (about e 27,300, see table 1). This implies that

regions without networks are highly unattractive, and that ethnic networks are

so important that regions without an ethnic network must provide considerably

better income opportunities to be considered equally attractive.

As the network size increases, the compensating variation decreases consid-

erably. At the same time, the standard deviation of the CV estimates increases

with network size, which reflects the considerable heterogeneity in the individual

squared network parameters. At a network size of 5 % the compensating vari-

ation drops to about e 13,000 on average, and to about e 2,300 at a network

size of 10 %. At the mean network size of 6.65 % the average compensating

variation is about e 9,500. The distribution of the compensating variation at

the mean network size is depicted in figure 1.

[Figure 1 about here.]

Table 3 also shows that the compensating variation for (the sum of) the

network sizes of neighboring regions is considerably smaller than the CV for the

network within a region. Furthermore, the compensating variation decreases

with distance, and there is a sizable difference between the CV for networks in

neighboring regions compared to regions in the rest of the country. In addition,

there is also a border effect: the compensating variation for networks in neigh-

boring regions of the same country is about e 3,200, while it is only e 2.300 for
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neighboring regions in another country. The same pattern holds for networks in

second neighbor regions. These results show that the importance of networks

decreases with distance to the region of residence, and that there are sizable

border effects in the spatial spillovers of ethnic networks.

4.2 Optimal network size

The individual level parameters can also be used to calculate the optimal net-

work size. Differentiating equation (3) with respect to the network variable and

solving for the network variable yields the optimal network size:

Network∗
jr = −

γ1k

2γ2k

(7)

Ignoring the 10.2 % for which the squared network variable is positive (and for

which the optimal network size would be 100 %, see table 2), the average optimal

network size calculated from individual level parameters is about 16.6 %.

Figure 2 shows the distribution of the optimal network size calculated from

individual level parameters for those with γ2k < 0. The distribution of the

optimal network size is heavily skewed to the right (see figure 2), and despite

excluding individuals with positive parameters for the squared network size vari-

able the distribution of optimal network sizes includes some very large values,

some even exceeding 100 % (calculated optimal network size values exceeding

100 % are included in the rightmost category of the histogram). The median op-

timal network size of 9.6 %, which is about 3.6 times the median actual network

size, therefore gives a better representation of the distribution of optimal net-

work sizes than the mean optimal netwzrk size. The smallest optimal network

size is 6.2%.

[Figure 2 about here.]

Despite the evidence provided here that there is an optimal ethnic network

size beyond which the probability of moving to a region actually decreases with

network size, the optimal network size is hardly approached in reality: only

0.8 % of all migrants live in a region where the actual ethnic network is larger

than the individual optimal network size, and for only 8.4 % the optimal network

size is within ±20 % of the actual network size. The optimal network size is

therefore rather hypothetical and hardly exceeded in reality.
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5 Robustness

5.1 Alternative definition of network size

For the estimation in section 4, the ethnic network was defined as the percentage

of migrants born in the same country of origin who have been living in the same

region for 10 years or longer among all migrants from the same ethnic group who

have been living in the 13 EU countries considered for at least 10 years. This

definition was chosen based on the assumption that migrants focus on the region

with the largest ethnic network (relative to the total number of migrants of the

same ethnicity, see also footnote 7). This definition of the network variable is

debatable. We therefore also consider the absolute size of the ethnic network—

the absolute number of migrants of the same ethnicity who have been living in

the region for more than 10 years, m10+
js —in an alternative specification.The

absolute networks in the neighboring regions of the same country are defined

accordingly as

Absolute networkN1

js =

Ls

1
∑

ls
1
=1

m10+
jls

1

Absolute networkN2

js =

Ls

2
∑

ls
2
=1

m10+
jls

2

and the absolute network in the rest of the country as

Absolute networkNC

js =

Ls

C
∑

ls
C

=1

m10+
jls

C

Again we differentiate between absolute networks in neighboring regions of the

same country and absolute networks in neighboring regions of other countries,

and the latter are given by

Absolute networkN ′

1

js =

L′s

1
∑

l′s

1
=1

m10+
jl′s

1

Absolute networkN ′

2

js =

L′s

2
∑

l′s

2
=1

m10+
jl′s

2

Summary statistics are displayed in table 4. On average, a local ethnic network

consists of about 14,300 individuals. Algerians in the Île de France region (which

includes the French capital, Paris) constitute the largest absolute local ethnic
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network: 266,000 Algerians had been living in the Île de France for at least 10

years in 2007.

[Table 4 about here.]

We do not consider the proportion of migrants of the same ethnicity among

the population in a region, which could be used as yet an alternative definition.

This proportion could be interpreted as an indicator for the number of possible

interactions with same-ethnicity individuals in random encounters in the region.

We believe this measure to be of lesser importance to the decision maker, not

only because regional migrant networks tend to be spatially concentrated even

within the region20 which makes random encounters less important, but also

because migrants are more likely to value the highest possible number of inter-

actions with same-ethnicity individuals rather than the probability of a random

encounter with someone from the same country of origin.

[Table 5 about here.]

Table 5 shows the results of random parameters and conditional logit re-

gressions of location choice. The main results of section 4 are unaltered by

this change in the definition of the network variable: ethnic networks both in

the same region as well as in neighboring regions (both within the country and

across borders) significantly affect migrants’ choice of the region of residence.

The odds of choosing a region are 33.2 % larger if the local ethnic network

increases by 1,000 individuals, and the effect of network size is again positive

for all migrants. This also holds true for the effects of networks in neighboring

regions which are, however, of limited importance in this specification: increas-

ing the network size in a neighboring region by 1,000 individuals increases the

odds of choosing a region by only 0.2 %. Networks in the rest of the country

also play a role for the location decision, the effect is, however, rather small

and even negative for about 63 % of all migrants. Compared to the estimation

results of table 2 the proportion of individuals for which this coefficient is posi-

tive decreases by about 40 p. p. in reaction to the change in network definition.

As before, ethnic networks in neighboring regions of other countries affect the

location decision positively. In contrast to the relative network size regression

(table 2), the estimated coefficients are slightly larger than for within-country

neighbors, but the absolute network size estimation shows a higher degree of

heterogeneity in these parameters. Again, the empirical model shows evidence

in support of the optimal network size hypothesis because of the negative pa-

rameter of the squared local network.
20E. g., ethnic enclaves such as the Chinatowns in U. S. cities like San Francisco or New York

or in European cities like Liverpool and London are well defined within a few city blocks.
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A direct comparison of the random parameters and conditional logit regres-

sions again shows that imposing fixed parameters on the empirical model would

lead to severe biases in parameters with a high degree of heterogeneity, such

as the capital, common border, and colony dummies, but also in the absolute

network size variable.

5.2 Alternative definition of neighboring regions

In the previous regressions, spatial ethnic networks were defined by summing up

the network size in neighboring NUTS-2 regions. This ignores that region size

differs across countries. Although the “Nomenclature des Unités Territoriales

Statistiques” (NUTS) should ensure at least some comparability across regions

in the European Union, NUTS-2 regions across Europe are quite heterogeneous.

While continental France is more than 1.5 times the size of Germany, there are 39

German and only 22 (continental) French NUTS-2 regions. In another example,

while the Region Övre Norrland (NUTS-2 code: SE33) had an area of about

165,300 km2 and about 3.3 inhabitants per km2 in 2007, the region Bruxelles-

Capitale (NUTS-2 code: BE10) had 161 km2 and about 6,500 inhabitants per

km2 (in 2007) according to Eurostat data. This of course implies that the

availability of a network in neighboring regions may differ with region size.

Therefore we also estimate the model defining neighboring regions by their

distance to the migrant’s region of residence. Ethnic networks in other regions

are considered only if the geographical center of the neighboring region is within

a radius ρ of 0–100 or 101–200 kilometers (as the crow flies) from the geographi-

cal center of the region of residence. Networks in the rest of the country (outside

the 200 kilometer radius) are included as an additional regressor. As shown by

the summary statistics in table 6, on average 4.0 % of an ethnic network (outside

the region of residence) can be found within a 100 kilometer radius. The average

number of those living in regions within 101–200 kilometers is about 5.1 %. As

before, we differentiate between ethnic networks within the host country and

networks in neighboring countries. Networks in neighboring regions in other

countries are considered when they are within a radius ρ′ of 0–100 and 101-200

kilometers. As before, the size of the local ethnic network in the region of resi-

dence as well as its squared value are included which allows a direct comparison

with the results in table 2.

[Table 6 about here.]

Despite the change in the definition of neighboring regions, the main con-

clusions are unaltered (see table 7): even if networks in neighboring regions are

considered only if they are within a given distance to the region of residence,
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they still affect location choice positively for all migrants. Networks within a

100 kilometer radius exert a larger influence than networks within a 200 kilome-

ter radius or networks in the rest of the country. Again, the largest effect can

be found for ethnic networks in the region chosen by the migrant. As before,

this effect is decreasing in network size for most migrants, and only for 10 %

the squared network variable has a positive coefficient. The estimated network

parameter is slightly larger in this regression, but close to the original parameter

of table 2.

[Table 7 about here.]

In contrast to the previous regressions, networks in neighboring regions of

other countries within a 100 kilometer radius affect location choice negatively

for 84 % of all migrants although the coefficient of first neighbors in other

countries was significantly positive in the other regressions and networks in

regions of other countries within in a 100–200 kilometer radius exert a positive

influence on the probability of choosing a specific region. This can be explained

by the differences in coverage between the two definitions: Each region has, on

average, 0.53 neighboring regions in other countries, but only 0.29 regions in

other countries are within a 100 kilometer radius.21 Overall, there are only 21

regions where the closest region in another country is less than 100 kilometers

away and actually hosts an ethnic network. The majority of these regions (16)

are in Belgium and the Netherlands, and it is therefore likely that the difference

to the main regression arises from the specifics of these countries or the ethnic

groups living in these countries.

5.3 Migrants vs. refugees

Because we cannot distinguish between migrants and refugees in the EU-LFS

data, our results might partly be driven by the differences in the location de-

cisions of these groups. For example, in some European countries (especially

Sweden, Denmark and the Netherlands) spatial dispersion policies are or have

been in place which restrict(ed) the freedom of movement of refugees. Therefore,

we also test the robustness of our results by estimating the model on subsets of

origin countries defined by the level of development. We assume that individuals

born in countries with low levels of development are more likely to be refugees

who cannot freely choose their residence location.Migrants from these countries

are therefore excluded from the regression.

21These differences are also substantial within countries: While each region has on average
3.52 (first) neighbors within the same country, only 1.42 (out of the first neighbors) are
within a 100 kilometer radius, 1.30 are within 100–200 kilometers, and 0.80 are more than
200 kilometers away from the region of residence.
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We use the United Nation’s Human Development Index (HDI) to define the

sending country’s level of development.22 The HDI ranges between zero and

one, and countries are classified into one of the following four categories: very

high human develoment (0.9 ≤ HDI ≤ 1), high human development (0.8 ≤

HDI < 0.9), medium human development (0.5 ≤ HDI < 0.8) and low human

development (0 ≤ HDI < 0.5).

[Table 8 about here.]

To distinguish refugees from migrants, we estimate the model only for indi-

viduals born in countries with at least medium human development. The results

in table 8 show that excluding those most likely to be refugees increases the size

of the estimated parameter for local networks only slightly from 0.376 to 0.427.

At the mean estimated parameter value, the odds of moving to a region are

53.3 % higher if the size of the ethnic network increases by 1 p. p. if refugees

are excluded, an increase of 7.7 p. p. compared to the regression for all coun-

tries (table 2). The other estimated parameters are hardly affected by excluding

refugees. Therefore, the main conclusions of our preferred specification remain

intact.

5.4 Educational and retiree migration

Finally, to focus specifically on the effects of networks on labor migration the

model was also estimated on a restricted sample including only migrants between

25 and 54 years of age. Both the location choice of younger migrants as well as

the location choice of older migrants may be driven by characteristics not related

to the labor market. For example, younger individuals moving abroad to study

will choose their location based on education opportunities, and not based on

regional labor market characteristics. The location choice of retired individuals,

on the other hand, may be driven by factors such as climatic conditions, as

evidenced not only by retiree migration to Florida but also by international

retiree migration to mediterranean countries in Europe (see Warnes, 2009, for

a recent review).23

[Table 9 about here.]

22The 2009 edition of the Human Development Report is used, which reports the HDI based
on 2007 figures, see UNDP (2009) for details.

23The sample is restricted to migrants younger than 55 years of age because older cohorts
would already contain a large number of retirees. According to 2006 data from the European
Labour Force Survey (Eurostat, 2008), the average age at which employed persons started
receiving a retirement pension in the countries considered ranged from 54.5 years in France
to 61.7 years in Denmark.
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The regression on the restricted sample shows that the main conclusions of

our analysis are practically unchanged (9). As before, both local ethnic net-

works as well as ethnic networks in neighboring regions have a significantly pos-

itive effect on location choice of working-age migrants to Europe. Furthermore,

quantitative differences between the estimated parameters are rather small, sup-

porting the results of our main specification (see table 2).24

6 Summary

This paper analyzes the effect of ethnic networks on the location decision of

migrants who moved to the EU between 1998 and 2007 using data from the

European Labour Force Survey. Using a random parameters logit specification

we find a substantially positive effect of ethnic networks on the location de-

cision of migrants, providing strong evidence for ethnic clustering of migrants

among European regions. The random parameters specification, which allows

for individual heterogeneity in utility functions, shows that there are substantial

variations in taste across individuals. The effect of ethnic networks in the same

region is, however, positive for all individuals. We also find evidence of spatial

spillovers in the effect of ethnic networks: ethnic networks in neighboring re-

gions (both in the same country as well as across the border) and networks in

the rest of the country significantly help to explain migrants’ choice of target

regions. The positive effects of ethnic networks thus extends beyond regional

and national borders. Additional estimations using different network and neigh-

borhood definitions as well as on subsamples of the data confirm the robustness

of our findings.

We also find a sizable compensating variation (willingness to pay), especially

for regions where only few previous migrants from the same country of origin are

located. Individuals would require a compensation of about e 21,600 in order

to consider a region without an ethnic network as attractive as an otherwise

equivalent region with an ethnic network size of 1 %.Considering that the aver-

age annual income per employee among the 158 regions used in the analysis is

about e 27,300, ethnic networks thus play a very important role in the location

decision and regions without an ethnic network are highly unattractive.

24If migration decisions are made at the household level, Mincer (1978) showed that women
are more likely to be “tied movers” while men more often are the “primary movers” of the
household. If this is the case or if female household members move later than male household
members (for example because family reunion in the host country is not immediately possible
after migration), a female migrant’s location choice may depend only on the choice made by
her partner and not on other factors such as ethnic networks, which may affect the estimated
parameters. But as shown by a regression on the restricted sample of male migrants aged
25 to 54 (see table A1 in the appendix) excluding females from the sample has only small
quantitative effects on most estimated parameters, so the main conclusions of section 4 remain
unchanged.
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At the average network size of about 6.65 %, the average compensating

variation is about e 9,500. There is, however, a considerable heterogeneity in the

compensating variation across individuals and the compensating variation for

networks in neighboring regions is considerably smaller than for networks within

a region. There is also a substantial border effect for network externalities.

Our results therefore show that ethnic networks in neighboring regions matter,

but that the importance of networks decreases with distance to the region of

residence, and that national borders reduce the positive effect of ethnic networks

in neighboring regions.

We also find evidence for the optimal network size hypothesis. For most

migrants, the positive effect of ethnic networks is decreasing in network size, as

indicated by a negative squared network parameter. Based on individual level

coefficients, the effect of the ethnic network becomes negative at a network size

of 16.6 % on average. But only 0.8 % of all migrants live in a region where

the actual network size exceeds the optimal network size. Although there is

evidence for an optimal network size, it is rather a hypothetical construct and

only few ethnic networks are actually close to the optimal level.

Although the qualitative conclusions concerning most estimated parameters

are similar to those of the computationally simpler conditional logit model,

our finding of spatial spillovers in the effect of ethnic networks shows that the

conditional logit’s independence from irrelevant alternatives (IIA) property is

violated. Furthermore, the significant standard deviations of the random param-

eters show that the limitations imposed by the conditional logit on the individual

parameters are too strict. We therefore conclude that the random parameters

logit is superior to the conditional logit in the analysis of the location decision

of migrants and that there can be considerable differences between conditional

and random parameters estimates if there is a high degree of heterogeneity in

the population.

Some policy conclusions can be drawn from the results of our analysis. Our

results point to a strong “lock-in effect” of the ethnic structure of migration.

The current regional ethnic structure of migration in part determines the future

regional pattern of ethnic migration. This implies that the heterogeneous use

of restrictions on the movement of labor among the EU-15 countries during the

transitional period will have effects on the long-term migration patterns from

the 8 member states which joined the EU in 2004. But regional concentrations

of migrants of the same ethnicity can be detrimental to integration measures and

foster the evolution of parallel societies. However, spatial dispersion policies (as

employed for example in Sweden) which aim at breaking up regional patterns

of ethnic migration will lead to a substantial welfare loss for migrants, which

must be considered in the evaluation of such policies.
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There is still scope for future extensions. First, the data set currently does

not allow us to distinguish migrants from refugees, which might have completely

different location patterns. Second, there may be differences according to edu-

cation level of migrants. E. g., highly skilled migrants may avoid regions with

large concentrations of low-skill migrants of the same ethnicity to escape statis-

tical discrimination (cf. Stark, 1994). Third, it could be interesting to analyze

the substitution patterns between regions based on the random parameters logit

model. Analyzing these substitution patterns could, for example, shed light on

the effects of changes in economic conditions (or migration policy) in one coun-

try (or region) on migration to all other countries (or regions) and thus provide

us with an important tool to forecast future migration patterns based on past

migration.
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Figure 1: Distribution of compensating variation for a 1 percentage point vari-
ation in ethnic network size (in e 1,000). Histogram and kernel density es-
timate. Calculated from individual level parameters at mean network size.
N = 8, 988, 710 observations. Source: European Labour Force Survey 2007.
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Figure 2: Distribution of optimal network size calculated from individual level
parameters. N = 8, 375, 514 observations. Source: European Labour Force
Survey 2007.
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Variable Mean S.D. Min. Max.
Networkjs 6.650 10.276 0.000 100.000
NetworkN1

js 7.449 9.841 0.000 100.000
NetworkN2

js 9.571 11.220 0.000 100.000
NetworkNC

js 14.442 17.334 0.000 100.000

NetworkN ′

1

js 0.364 1.568 0.000 32.338

NetworkN ′

2

js 1.310 3.570 0.000 51.233
Population (in 100,000)† 1.544 1.449 0.107 9.027
Region size (in 1,000 km2)† 17.345 23.686 0.161 165.296
Unemployment rate (in %)† 7.290 3.743 2.286 20.186
Avg. income p. a. (in e 1,000)† 27.263 10.299 10.567 95.979
Capital (= 1)† 0.082 0.275 0.000 1.000
Distance (in 1,000 km) 4.697 3.641 0.055 18.981
Common border (= 1) 0.045 0.207 0.000 1.000
Common official language (= 1) 0.375 0.484 0.000 1.000
Colony after 1945 (= 1) 0.140 0.347 0.000 1.000

Table 1: Summary statistics of the independent variables. †N = 158 obser-
vations, all other variables: N = 8, 988, 710 observations. Source: European
Labour Force Survey 2007, Eurostat, CEPII.
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Variable Mean S.D. Min. Max.
CVk(Networkjs = 1) 21.612 0.982 19.734 24.290
CVk(Networkjs = 5) 13.010 4.809 4.564 26.170
CVk(Networkjs = 10) 2.257 9.594 -14.415 28.519
CVk(Networkjs = 15) -8.495 14.379 -33.394 30.868
CVk(Networkjs = 20) -19.248 19.164 -52.373 33.218
CVk(Networkjs = 25) -30.000 23.949 -71.352 35.567

CVk

(

NetworkN1

js

)

3.245 0.005 3.184 3.285

CVk

(

NetworkN2

js

)

2.286 0.026 2.128 2.463

CVk

(

NetworkNC

js

)

1.558 0.677 -0.535 5.387

CVk

(

Network
N ′

1

js

)

2.182 0.009 2.124 2.244

CVk

(

Network
N ′

2

js

)

0.766 0.024 0.613 1.011

Table 3: Compensating variation (willingness to pay) for a 1 percentage point
change in network size (in e 1,000). N = 8, 988, 710 observations. Source:
European Labour Force Survey 2007.
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Variable Mean S.D. Min. Max.
Absolute networkjs (in 1,000) 14.323 34.175 0.000 265.987
Absolute networkN1

js (in 1,000) 16.964 39.340 0.000 463.514
Absolute networkN2

js (in 1,000) 22.496 49.831 0.000 652.008
Absolute networkNC

js (in 1,000) 35.114 79.183 0.000 857.423

Absolute networkN ′

1

js (in 1,000) 2.564 13.955 0.000 365.762

Absolute networkN ′

2

js (in 1,000) 8.085 31.300 0.000 411.412

Table 4: Summary statistics, absolute network size variables. N = 8, 988, 710
observations. Source: European Labour Force Survey 2007.
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Variable Mean S.D. Min. Max.
Networkρ≤100

j 4.008 9.965 0.000 97.181
Network100<ρ≤200

j 5.106 9.777 0.000 100.000
Networkρ>200

j 21.953 21.113 0.000 100.000

Networkρ′≤100
j 0.061 0.857 0.000 60.556

Network100<ρ′≤200
j 0.469 2.443 0.000 89.838

Table 6: Summary statistics, networks in neighboring regions defined by dis-
tance from region of residence. N = 8, 988, 710 observations. Source: European
Labour Force Survey 2007.
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