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Abstract

We provide steps towards a welfare analysis of a two-country
endogenous growth model where a relatively small follower ab-
sorbs part of the knowledge generated in the leading country.
To solve a suitably defined infinite-horizon dynamic optimization
problem a specialized version of the Pontryagin maximum prin-
ciple had to be applied. For a quite small follower, optimization
produces the same asymptotic rate of innovation as the market.
However, relative knowledge stocks and levels of productivity dif-
fer in the two solutions. Thus, optimal policy intervention has no
effect on long-run growth rates but affects these relative levels.

Keywords: Endogenous Growth; R&D Spillovers; Absorp-
tive Capacities; Dynamic Optimization

JEL Classification: C61; O30; O40

∗The authors would like to thank participants of the 5th Annual Conference of
the European Network on Industrial Policy (EUNIP), Vienna, November 29 - Decem-
ber 1, 2001, and of the IIASA-TIT Technical Meeting on ”Mathematical Modeling
and Empirical Analysis of Institutional Elasticity and Functionality Development in
Information-based Techno-Economic Development”, Tokyo Institute of Technology,
Tokyo, December 7 - 10, 2001, for their valuable comments and suggestions. The
usual disclaimer applies.

1



1 Introduction

An endogenous growth model linking a smaller follower country to a
larger, informationally autarkic leader through ”absorptive capacities”
enabling it to tap the knowledge stock generated by the leading country
was introduced by Hutschenreiter, Kaniovski and Kryazhimskii, 1995.
We will refer to this model as the ”leader-follower” model. It is built
along the lines of the basic endogenous growth model with horizon-
tal product differentiation (Grossman and Helpman, 1991, Chapter 3),
where technical progress is represented by an expanding variety of in-
termediate products. The leader-follower model was symmetrized to
allow for knowledge flows in both directions (Borisov, Hutschenreiter
and Kryazhimskii, 1999).

Based on a comprehensive analysis of the dynamic behavior of the
leader-follower model, a particular class of asymptotics was singled out.
Any trajectory characterized by this asymptotics was shown to be a
perfect-foresight equilibrium trajectory analogous to the one found by
Grossman and Helpman for their basic model. For this type of trajec-
tory, explicit expressions in terms of model parameters for the long-run
values of key variables such as the rate of innovation, the rate of output
and productivity growth, the ratio of the stocks of knowledge of the two
countries, or the amounts (shares) of labor devoted to R&D and man-
ufacturing, respectively, were provided (Hutschenreiter, Kaniovski and
Kryazhimskii, 1995).

The evolution of the economy represented by this model is the result
of decentralized maximizing behavior of economic agents. A perfect-
foresight equilibrium trajectory generated by the model can therefore
be referred to as ”decentralized” or ”market” solution. However, it is
well-known that a market solution is not necessarily an optimal solution.
Rather, non-optimality is a common outcome in the presence of exter-
nalities of some kind. According to Grossman and Helpman, 1991, in
their basic model intertemporal spillovers result in a market allocation
of resources which is not Pareto-optimal: too little labor is allocated
to R&D. In contrast, Benassy, 1998, finds that both under-investment
and over-investment in R&D (in terms of allocation of labor to R&D
activities) is possible if returns to specialization are separated from the
monopolistic mark up. In any case, deviations of the optimal from the
market solution provide scope for welfare-enhancing policy intervention.

A welfare analysis of the leader-follower model proposed by Hutschen-
reiter, Kaniovski and Kryazhimskii, 1995, is missing so far. This paper
reports first results of work designed to fill this gap (a complete state-
ment is contained in Aseev, Hutschenreiter and Kryazhimskii, 2002).
This work is based on optimal control theory.
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This paper is organized as follows: In section 2 we set up the infinite-
horizon dynamic optimization problem capturing the task of intertempo-
ral utility maximization faced by a fictitious social planner in the follower
country. The analytical elements leading to this optimization problem
are briefly discussed. Section 3 contains some remarks concerning the
mathematical approach and reports major results of the mathematical
analysis of the dynamic optimization problem. Section 4 interprets re-
sults of the mathematical analysis and provides a comparative analysis
of the market and the optimal outcome. The final section concludes.

2 The optimal control problem

In the model we analyze, an economy’s homogeneous labor resources
can be used in two different ways, either for manufacturing intermediate
goods (which enter final output instantaneously) or in the production
of blueprints for new intermediate goods (which permanently raises pro-
ductivity in final goods production). The optimization problem faced
by a fictitious social planner maximizing utility by allocating resources
to R&D or manufacturing is the following:

max J
(
nB (.) , LBn (.)

)
=

=

∫ ∞
0

e−ρt
((

1

α
− 1

)
log nB (t) + log

(
LB − LBn (t)

))
dt, (1)

ṅB (t) =
LBn (t)

a

(
nB(t) + γnA (t)

)
, (2)

ṅA (t) = ḡAnA (t) , (3)

nB(0) = nB0 , nA (0) = nA0 , (4)

LBn (t) =
[
0, LB

)
. (5)

Let us state for now that the model parameters ρ, α, LB, a, γ, ḡA are
all positive. Their meaning, as well as that of the variables, will be
made clear in what follows. Also note that the objective function (1)
is the same as in the social planning problem formulated by Grossman
and Helpman, 1991. Let us first comment on this objective function.
Recall that production of final output is represented by a Dixit - Stiglitz
- Ethier production function Y B(t) where final output is produced by a
set of differentiated intermediate goods (Dixit and Stiglitz, 1977, Ethier,
1982)

Y B(t) =



nB(t)∫

0

x(j)αdj




1/α

, (6)
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where nB(t) is the number of these goods invented up to time t and x(j)
represents the output of intermediate good of variety j. The parameter
0 < α < 1 is related to the constant elasticity of substitution ε = 1/(1−
α). Grossman and Helpman, 1991, also provide a dual interpretation
of function Y B(t) as an index of utility (the ”love of variety” approach)
which we will not take up here. See on this issue Barro and Sala-i-Martin,
1995.

It is a well-known feature of the basic Grossman - Helpman model
that in a momentary, symmetric equilibrium (an efficient static allo-
cation of resources at any instant of time), all types of intermediate
goods are produced in the same quantities. If xB(t) denotes this uni-
form output per brand, aggregate output of intermediates is given by
XB(t) = nB (t) xB (t). Consequently, for the production function Y B(t),
final output at time t is given by

Y B(t) =
(
nB (t)

)1/α
xB (t) =

(
nB (t)

)1/α−1
XB(t). (7)

Thus, total factor productivity (TFP) measured at time t is an in-
creasing function of the the number of intermediate goods invented in
the country so far which, in turn, is taken to represent the country’s
current stock of knowledge:

Y B (t)

XB (t)
=
(
nB (t)

)1/α−1
. (8)

With steady growth, characterized by a constant allocation of labor to
manufacturing and R&D, the growth rate of final output and TFP is
identically (1/α− 1) ḡB(t), where ḡB(t) denotes the steady-state rate of
growth of the country’s knowledge stock.

In the basic Grossman - Helpman model, each intermediate good
is produced by a constant-returns-to-scale technology where one unit of
labor is required to turn out one additional unit of output. Consequently,
aggregate output of intermediate goods equals total labor allocated to
manufacturing,

XB (t) = LB − LBn (t) , (9)

where LB represents the economy’s constant supply of homogeneous la-
bor and LBn (t) the amount of this pool of labor allocated to R&D.

At any moment of time, the market for final goods is assumed to be
in equilibrium so that consumption CB (.) equals the flow of final output

Y B (t) = CB (t) . (10)

In the following analysis we assume that instantaneous utility is given
by

U (t) = logCB (t) . (11)
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Of course, one could work with a more general utility function. In
fact, (11) is a limiting case of the widely used constant-elasticity-of-
intertemporal-substitution utility function

U(t) =
C (t)1−θ − 1

1− θ
as θ → 1. For simplicity, we restrict ourselves to this limiting case.

Combining (7), (9), (10) as well as (11), and discounting by the time
preference rate ρ we obtain the expression in the integral defining the
objective function.

Let us next turn to equation (2) in the above optimal control prob-
lem. In the spirit of Romer, 1990, we employ a production function
for developing blueprints for novel intermediates where the productivity
of resources devoted to R&D is enhanced by the accumulated stock of
knowledge capital. In the basic model with expanding product variety, a
country’s current stock of knowledge capital is simply equated with the
number of intermediate goods invented in that country so far. A distin-
guishing feature of the leader-follower model is that the knowledge stock
available in the follower country B at time t is assumed to consist of the
sum of the knowledge accumulated in country B which is represented by
the number of differentiated inputs developed so far domestically, nB(t),
and a term comprising externally produced knowledge appropriated by
country B. More specifically, a fraction 0 6 γ

(
nB
)
6 1 of the knowl-

edge stock produced in country A is absorbed into the knowledge stock
of country B. Function γ(nB) represents the absorptive capacities (see
Cohen and Levinthal, 1989) of the follower (determined by its capabil-
ities but also by barriers to international communication or the extent
of redundant knowledge which will not be targeted by the follower). For
simplicity, in the present optimization problem we treat the absorptive
capacities of the follower country as a parameter, γ. Finally, parameter
a reflects productivity in R&D.

Equation (3) tells us that the autarkic leading country’s stock of
knowledge grows exponentially at the steady rate of innovation ḡA > 0.
If the leading country evolves in its steady state, we know from Grossman
and Helpman that its exponential rate of innovation is given by

ḡA = (1− α)
LA

a
− αρ > 0. (12)

Equation (4) fixes initial conditions. Finally (see (5)), it is assumed
that the follower country’s R&D labor does not exhaust its total labor
force and thus manufacturing activity does not vanish at any instant of
time.
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The analysis reported in this paper is restricted to the case

ḡA > LB/a.

This inequality has a straightforward interpretation. If research pro-
ductivity is identical in the two countries it says that the steady-state
amount of labor allocated to R&D in the leading country exceeds the
total labor force in the follower country. This suggests that - given uni-
form R&D productivity - the follower country is quite small relative to
the leader. As shown in Hutschenreiter, Kaniovski and Kryazhimskii,
1995, the opposite inequality must hold for the follower country to be
able to catch up with the leader in terms of knowledge stocks in the
decentralized case.

At present, we have tentative results for the slightly relaxed con-
straint

ḡA > LB/a− ρ/a
as well as for the opposite case

ḡA ≤ LB/a− ρ/a.

Clearly, the latter case fulfills the necessary condition which, according
to Hutschenreiter, Kaniovski and Kryazhimskii, 1995, must be fulfilled
for the follower country to be able to catch up with the leader in terms
of its knowledge stock. In the present paper we will not deal with the
last two cases.

3 Mathematical approach and main results

In this section we comment on the mathematical approach taken and re-
port major results of the analysis. This analysis is carried out within the
framework of mathematical optimal control theory (Pontryagin, et al.,
1962). An important feature of the problem under consideration is that
the goal functional is defined on an infinite time interval. In problems
with infinite time horizons the application of the Pontryagin maximum
principle, the key instrument in optimal control theory, is, in general,
less efficient than in problems with finite time horizons. In particular,
for the case of infinite time horizons the natural transversality condi-
tions, providing as a rule essential information on the solutions, may not
be valid (Halkin, 1974). Another important feature of the problem un-
der consideration lies in the presence of a logarithmic singularity in the
goal functional. This singularity poses additional difficulties and makes
it impossible to apply the known mathematical results to this problem
directly.
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The analysis performed by Aseev, Hutschenreiter and Kryazhimskii,
2002, is based on the approximation approach to the investigation of op-
timal control problems with infinite time horizons developed recently in
Aseev, Kryazhimskii and Tarasyev, 2001. This approach provides a pos-
sibility to establish existence results for problems with infinite time hori-
zons and to derive the appropriate versions of the Pontryagin maximum
principle which contain some extra conditions on the adjoint function
and the behavior of the Hamiltonian at the infinity (in fact, this allows
us, in some cases, to guarantee the validity of the additional transver-
sality conditions at the infinity).

In the mathematical analysis, based on a suitable transformation of
the original problem, the existence of an optimal solution of the optimal
control problem (1) - (5) was shown. For a complete statement see
Aseev, Hutschenreiter and Kryazhimskii, 2002.

To start with, let us define the ratio of knowledge stocks as

r(t) =
nB (t)

nA (t)
.

A major result of the mathematical analysis is that the unique optimal
ratio of knowledge stocks approaches the positive constant

r∗ = γ
2L

B

a

(
1
α
− 1
)− 1

α
ḡA − ρ+

[(
1
α
ḡA + ρ

)2
+ 4L

B

a

(
1
α
− 1
)2
ḡA
]1/2

2
((

1
α
− 1
) (
ḡA − LB

a

)
+ ρ
) ,

(13)
Furthermore, the control variable LBn (t) approaches the positive con-

stant

LB∗n =
aḡA

1 + γ
r∗
. (14)

Also, the adjoint variable p (t) of the (redefined) optimal control prob-
lem examined approaches the positive constant

p∗ =
1

γ L
B

a
−
(
ḡA − LB

a

)
r∗
.

This variable can be interpreted as the current value shadow price
associated with the ratio of knowledge stocks.

4 A comparative analysis of the market and the
optimal outcome

As noted, a major result of the mathematical analysis of the optimal
control problem examined is that, under the present assumptions, there
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is an unique optimal asymptotic ratio of the stocks of knowledge of the
two countries. This result implies that the knowledge stocks of the two
countries grow at an identical exponential rate as time goes to infinity.
Since the rate of innovation of the leading country is a parameter in our
maximization problem, the asymptotic rate of innovation of the follower
country equals that of the leading country.

This result was also found to hold asymptotically for a perfect-
foresight equilibrium trajectory in the decentralized leader-follower model
(Hutschenreiter, Kaniovski and Kryazhimskii, 1995). Thus we conclude
that in terms of the asymptotic rate of innovation, social planning pro-
duces exactly the same result as the market mechanism. This unsettles
a tenet which - as, e.g., pointed out by Aghion and Howitt, 1998 - is of-
ten, albeit wrongly attributed to endogenous growth theory. R&D-based
endogenous growth models may well produce uniform long-run growth
rates across countries.

However, it is possible that the long-run ratio of knowledge stocks
associated with the market outcome differs from that in the optimal
solution. In order to proceed towards a welfare analysis of the leader-
follower model we will compare the asymptotically optimal amount of
labor allocated to R&D, LB∗n , to the long-run market allocation LBn∞ =
limt→∞ LBn (t). This is equivalent to a comparison of the optimal ratio
of knowledge stocks, r∗, to the market outcome r∞ = limt→∞ r(t).

According to Hutschenreiter, Kaniovski and Kryazhimskii, 1995, in
the market solution the asymptotic ratio of knowledge stocks is a simple
function of the absorptive capacities of the follower and relative country
size. Specifically, in the decentralized case, a perfect-foresight equilib-
rium trajectory was shown to be characterized by nB(t) growing to in-
finity, and the asymptotic ratio of knowledge stocks of the two countries,
r(t) = nB (t) /nA (t), approaching the positive constant

r∞ =
γ

(LA/LB)− 1
. (15)

Thus, e.g., in the case where country A is twice the size of country B,
the relative knowledge stock of the latter simply equals its absorptive
capacity.

In contrast, solving the above optimization problem we arrive at the
considerably more complex expression (13) for the ratio of knowledge
stocks. Thus, in general (except for particular parameter constellations),
the asymptotic relative knowledge stocks derived from the two models
are not the same. Indeed, we have proved (see Aseev, Hutschenreiter
and Kryazhimskii, 2002) that the optimal asymptotic ratio of knowl-
edge stocks exceeds the corresponding asymptotic ratio achieved by the
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market, i.e.
r∗ > r∞.

If the the optimal ratio of knowledge stocks is higher than the respec-
tive market limit ratio then it follows that the market allocates too little
labor to R&D. To illustrate this, let us divide both sides of equation (2)
by nB(t). Using notation gB(t) = ṅB(t)/nB(t) we get

gB(t) =
LBn (t)

a

(
1 +

γ

r(t)

)
.

Resolving this equation for LBn (t) yields

LBn (t) =
agB (t)

1 + γ
r(t)

. (16)

We have shown that ḡA is the asymptotic rate of innovation of the leading
and the follower country in both the market and the optimal solution.
Fixing the rate of innovation at this value and passing to the limit, for
the decentralized case, (16) becomes

LBn∞ =
aḡA

1 + γ
r∞

. (17)

In the case that, for a given rate of innovation, the asymptotic ra-
tio of knowledge stocks is small, i.e. the leading country approaches a
relatively large stock of knowledge, the follower will devote only little
resources to its own R&D activities. The reason for this is that the
productivity of the follower country’s researchers is strongly boosted by
knowledge absorbed from the leader so that it has to devote relatively
little resources to own R&D in order to reach the leader’s rate of inno-
vation. On the other hand, if the knowledge stock the follower country
achieves in the long run gets large relative to that of the leading coun-
try, its R&D labor input asymptotically approaches aḡA = L̄An , i.e. the
steady-state R&D labor input of the leading country, from below.

Since in the market outcome the asymptotic ratio of knowledge stocks
is given by (15), and taking into account equation (17), the amount of
labor allocated to R&D approaches

LBn∞ =
LB

LA
aḡA. (18)

It follows that in the long run, the shares of R&D employment in the
total labor force are the same in both countries, namely aḡA/LA.
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In contrast, for the optimal solution we have (14). Since we have
established that that r∗ > r∞ it follows immediately that

LB∗n > LBn∞,

i.e. the long-run market allocation of labor to R&D is less than optimal.
Clearly, the limit optimal share of labor allocated to R&D in the follower
country is higher than that in the market solution as well as that in the
leading country.

To summarize, in the market solution of the leader-follower model,
the long-run values of the pair r (t), LBn (t) consistent with the uniform
asymptotic rate of innovation ḡA is given by r∞ (t), LBn∞ (t) defined by
equations (15) and (18). For the optimal solution the corresponding
pair r∗ (t), LB∗n (t) is defined by (13) and (14). This latter, optimal pair
strictly dominates the first one.

5 Conclusions

For the leader-follower model examined, we conclude that, for a relatively
small follower country, dynamic optimization (social planning) produces
exactly the same asymptotic rate of innovation as the market, i.e. it
does not improve the market outcome in these terms. This result is
at odds with a tenet wrongly attributed to endogenous growth theory.
Our example shows that R&D-based endogenous growth models may
well produce uniform long-run growth rates across countries. However,
we have shown that in the market solution the long-run allocation of
labor resources to R&D in the follower country is less than optimal and,
correspondingly, that the optimal ratio of knowledge stocks is larger
than the corresponding ratio in the market solution. This implies that
in the market solution the level of productivity of the follower country
relative to that of the leader is less than optimal. Thus we arrive at the
”Solowian” conclusion that optimal policy intervention does not have
any effect on the long-run growth rate but will affect long-run relative
knowledge stocks and relative levels of productivity.
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