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GERHARD THURY

Testing for Seasonal Integration and Seasonal
Cointegration

The Austrian consumption income relationship

Recently, there has emerged renewed interest for the study of seasonal fluctuations in economic activ-
ity. Traditionally, this kind of variation has been considered as "nuisance" component which only ob-
scures the more important features of a series. In applied work, it was either removed by seasonal ad-
justment procedures before starting the analysis or captured by including seasonal dummies.

After the publication of the seminal paper by Nelson and Plosser (1982) the problem of nonstationarity
in economic time series has received increasing attention. However, the nonstationarity tests which
were proposed in the beginning in the relevant literature, search only for a unit root, which corresponds
to a zero-frequency peak. Furthermore, it was assumed that there are no other unit roots in the series.
A similar research strategy was adopted in tests for cointegration. For example, it was standard prac-
tice to estimate the cointegrating parameter o in the bivariate case by regressing x4, onxp , , which was
called the cointegrating regression. If the resulting residual z, was stationary, the two variables were
said to be cointegrated.

Many economic time series, however, exhibit strong seasonality which can be characterized by sea-
sonal unit roots corresponding to peaks at the seasonal frequencies in the spectrum. In this situation,
the above procedure is inappropriate for a cointegration test, even at the zero frequency. As a conse-
quence, the concepts of integration and cointegration have to be extended to incorporate seasonal in-
tegration and seasonal cointegration. Such extensions are proposed in Hylleberg et al. (1990) and
Engle et al. (1993), in the following abbreviated as HEGY (1990) and EGHL (1993), respectively.



Seasonal integration and cointegration

The spectrum of a seasonal series has distinct peaks :at the seasonal frequenciesog = 2 njg Jj=1,2,
- % , where s is the number of time periods per year. In this paper, quarterly data will be analyzed so
that we concentrate on s = 4.

Two classes of time series models -are generally employed to model seasonality in-economic time se-
ries:

(i) apurely deterministic model,
(i) a stochastic model.

In a deterministic model, it is assumed that the seasonality is generated by dummy variables and can
be removed by a simple regression on these variables. The seasonal component can be perfectly fore-
cast and will never change its shape. The stochastic model assumes that the seasonality is caused by
an integrated process, which has unit roots at the seasonal frequencies. Whether or not such unit roots
exist, can be tested empirically.

In the following, we present a short description of possible test procedures. In doing this, we closely
follow the exposition in ‘Banerjee et al. (1993).

The familiar seasonal difference operator can be written as

(1-B%

(1-B)(1+ B+ B2+ B3)

(1-B)S (B).

That is, the seasonal difference operator can be written as product of the first difference operator and
the moving-average seasonal filter S (B), which contains further roots of modulus unity, i. e.

1]

S (B) (1+ B+ B2+ B3)

(1+B)(1+B2)

L]

(1+B)(1-iB)(1+iB).

Thus, a quarterly seasonal unit root process has four roots of modulus unity: one at the zero frequency,
one at the two-quarter (biannual) frequency, and a pair of complex conjugate roots at the four-quarter



(annual) frequency. As example, consider the processa (B) x; = 0. For o (B) = (1 + B), we obtain x4 =
-x; and x42 = x; . The process returns to its original value after a cycle with a period of 2.

Engle et al. (1988) give the following formal definition of a seasonally integrated process. A variable x;
is seasonally integrated of orders d and D (denoted by SI (d, D)), if (1 — B)4 S (B)P x, is stationary. Thus,
for quarterly data, if (1 — B4) x, is stationary, then x, is SI (1, 1) with S (B} = (1 + B + B2 + B3). The prop-
erties of seasonally integrated processes are similar to those of ordinary integrated processes. They
have "long memory", i. e. the effects of shocks will persist indefinitely, and their variance increases
linearly with time. However, since seasonally integrated processes contain multiple roots of modulus
unity, they will not behave like 7 (1) processes in all respects. Above all, shocks will also change the
seasonal pattern of a series and, consequently, observations for a particular quarter will evolve in dif-
ferent ways. Taking first differences of such a series will not produce stationarity.

Testing for unit roots at seasonal frequencies has much in common with testing for an ordinary unit
root. Tests have been proposed by Hasza and Fuller (1982), Dickey, Hasza, and Fuller (1984), Osborn,
Chui, Smith, and Birchenhall (1988), HEGY (1990), and EGHL (1993), among others. Since we shall
employ the HEGY (1990) approach in the empirical part of this paper, we present a brief exposition of
their testing strategy here.

Let x; be a quarterly series which is generated by
(1) aBx= g,

where ¢, is iid (0, 02) and « (B) is a fourth-order lag polynomial. The null hypothesis, that the roots of
a (B) lie on the unit circle, is to be tested against the alternative, that they lie outside. Defining three
positive parameters 84 , 82, and 83, o (B) can be written as

(2 o = (1-8 B)(1+382B)(1+8;3B2)
For §; close to 1, this can be further rewritten by using a Taylor series approximation, as

(3 oa(B = MBA+B)(1+B2)-2B(1-B)(1+B2)-A3iB(1-B)(1+B)(1-iB)+
A iB(1-B)(1+B)(1+iB)+a*(B) (1-B%),

where the last term is a remainder. Making the substitutions 74 = —Aq , 12 = A2 , 2 A3 = —n3 + i m4 , and
2 A4 = —m3 — i m4 , and grouping terms in n3 and m4 , the expression for o (B) can be written as

(4 o@B = -mqB(1+B+B2+B%)+mnyB(1-B+B2-B3)+(nzB+my)B(1-B2)+
a*(B) (1-B*),

Substituting this expression into (1) and rearranging, we obtain



(85 o*@B) (1-BY)x;= miz1,1+ 222, 1+ T423 1+ M323 42 &,

where
21 = (1+B+B2+B%)x,
z3; = -(1-B+B2-B%)x,
z3; = —(1-B2)x.

The z;'s are transformations of the original series x;, from which unit roots at specific frequencies have

been filtered out. For quarterly data, the frequencies of interest are @ = 0, % , % , % , for a cycle of length

2n. Tow = % corresponds a frequency of 2 cycles per year (biannual frequency), and too = % and %

one of 1 cycle per year (annual frequency). We see that z4 , can have a unit root only at the zero fre-

quency (e = 0) so that (1 — B) z1 , becomes stationary. Similarly, z , has a unit root at frequency o = -;— )

i. e. at the biannual frequency for quarterly data. (1 + B) zp , is stationary. Finally, z3 , has a pair of com-

plex unit roots at the annual frequency | o = % so that (1 + B2) z3 , becomes stationary.

Eq. (5) can be estimated by OLS, possibly with added lags of the dependent variable to whiten the re-
sidual error. The resuiting estimates of the n;'s can then be employed for test purposes. For the null,
that there exists ‘a unit root at the zero frequency, we require A4 = 0 what corresponds to ny = 0. Fora
unit root at the biannual frequency, we test whether A» = 0 corresponding to nz = 0. For a unit root at
the annual frequency, finally, we investigate whether A1 or 4 = 0, each of which requires a joint test
that n3 and 74 are equal to zero. Critical values for these tests are tabulated by HEGY. Rejection of all
these null hypotheses implies stationarity of the process.

The concept of cointegration, as proposed in Engle and Granger (1987), concentrates exclusively on
unit roots at the zero frequency and, moreover, it is assumed that there are no other unit roots in the
system. But, since it is evident that seasonal fluctuations are an important feature in economic time se-
ries, it is necessary to extend the original concept of cointegration to include the possibility of unit roots
at seasonal frequencies other than zero. This leads to the idea of seasonal cointegration as proposed
by HEGY (1990) and EGHL (1993). ‘

Before describing a testing procedure, we shall give a formal definition of seasonal cointegration. Let
each component of a vector of time series, x;, be seascnally integrated of order 1, i. . x;,~ SI'(1, 1).
The components of x, are then said fo be fully cointegrated, denoted by x,~ CI (1, 1), if there exists a
vector o (# 0) so that z, = o' x, is stationary, i. e. z, ~ I(0). The implications of seasonal cointegration are
not immediately obvious but are not unsimilar to those of ordinary cointegration. In particular, seasonal



cointegration implies that an innovation has only a temporary effect-on the seasonal behaviour of z, =
o'x,, while it will have a permanent effect on the seasonal pattern of x,. The close relationship be-
tween cointegration and error correction models allows it to cope with this special situation by appro-
priate error correction mechanisms.

In testing for seasonal cointegration, we use a procedure which was proposed in EGHL (1993). The
strategy behind this method is rather simple. The original Engle-Granger type 2-step testing procedure
for cointegration is applied to appropriately filtered series. For example, in order to test for cointegration
at the zero (long-run) frequency in the Austrian consumption income relation, we first run the regres-
sion

(6) c1+ = ayitBDtu,

where
c1; = S(B)eg = (1+B+B2+ B3¢,
yi: = SB)y; = (1+B+B2+B3)y,,

and ¢, and y, symbolize the logs of real consumption and real disposable income, respectively, while D,
denotes a set of deterministic components (intercept, trend, seasonal dummies). In a second step, we
test whether the residual », is stationary.

The test for cointegration at the biannual frequency is formally identical, that for cointegration at the an-
nual frequency is slightly more complicated. Details can be found in EGHL (1993).

Empirical results

We now apply the above concepts to analyze observed data from the Austrian National Accounts,
namely real consumption expenditure on nondurables and services and real disposable income cover-
ing the time period 1956.1 to 1992.4.

A graph of the natural logarithms of these series (in the following small letters always denote logarithms
of a series) is given in fig. 1. The logarithmic transformation is chosen in order to stabilize the variance.
Both series have a distinct seasonal pattern with strong peaks and troughs in the fourth and first quar-
ters, respectively. The fourth-quarter peak in income is caused by massive bonus payments.



Log of real consumer expenditure on nondurables and services, ¢, ,

and log of real dispesable income, y,

1956.1 to 1992.4
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Figure 3

Log of real consumer expenditure (c g (i),i=1, 2, 3, 4) and
log of real disposable income (y g (i),i=1,2,3, 4)
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The first differences of the two series, which are depicted in fig. 2, clearly show that the seasonal pat-
tern of both series changes over time. This becomes even more evident from fig. 3, which shows
graphs for the different quarters of each series, and from fig. 4, which contains the unit root transforma-
tions —(1 — B + B2 — B3) and —(1 - B2) of both ¢, and y, . Especially, the income series has a changing
seasonal pattern where "spring" becomes "summer" since y ¢ series crosses the y g3 series.



Figure 4

Unit root transformations of the log of real consumer expenditure
and the log of real disposable income

1956.1 to 1992.4
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Tests for seasonal integration

The outcome of formal tests for seasonal integration is given in table 1. These results provide evidence

that both series, consumption and income, are integrated of order 1 at all frequencies ® =0, % % %

implying that the seasonal component of these series is stochastic and not deterministic. Thus, since
consumption and income have similar univariate time series properties, cointegration cannot be ruled
out.

From the results in table 1, we can draw first tentative conclusions about the existence of cointegrating
relations in the Austrian consumption income data. A possible candidate for a cointegrating vector com-

mon to all frequencies would be [1, —1], which would imply that the log of the consumption income ratio,

i.e. ¢, —yy, is I(0) at the frequencies o =0, jlf, % % Since the cointegrating vector is not estimated,

the distributions given in HEGY (1990) apply. The results of table 1 cannot reject a unit root at the zero
frequency, while they provide some evidence for rejecting unit roots at the other seasonal frequencies.



Table 1
Tests for seasonal integration
1956.1 to 1992.4
Variable Auxiliary regression t t t t F
Determistic Augmentation 4 o 3 T4 Tig M Ty
components?)
¢ LTR 1,2,3,4 - 0.632 - 1.569 - 1434 - 0.234 1.058
1,8D, TR 1,3,4 -~ 0.536 - 2273 - 2748 - 0677 4.052
Ve L TR 1,4 - 1412 0.003 - 1.761 - 11411 2.195
1,8D, TR 1,4 - 1.243 - 2597 — 2.969 - 1.553 5.727
=¥ L TR - 2.209 - 3.540* - 1.930* - 0.011 1.862
I,8D, TR 3 - 2689 - 3.078* - AT777* -~ 1.067 12.133*
* .. Significant at 5% level. Critical values are from HEGY (1990). — 1) /. . . intercept, SD . . . seasonal dummies,
TR. .. trend.
Table 2
Tests for cointegration at frequency 0: the long run')
1956.1 to 1992.4
Cointegrating regression R2 Auxiliary regression Tests for unit
Regressor Deterministic Deterministic Augmentation ] roots in
Regressand P14 components components residuals "ADF"
included Ir,
c1¢ 0.7074 I, TR 0.9980 1,2,3,4 - 1.963
(0.0211)
c1¢ 0.8906 1 0.9970 1,2,3,4 -2.229
(0.0040)
cq4 0.9576 . 0.9999 1,3,4 -2.234
(0.0006)
c14 1.0000 L TR 1,3,4 —2.204
(fixed)
C1q 1.0000 1,SD, TR 1,3, 4 ~-2.178
(fixed)

k
1) The tests are based on the augmented Dickey-Fuller regression u, = 14 u,q + > bj u,_j+e, , where u,is the re-

=

sidual from the cointegrating regression ¢4 , = deterministic component + o yy , + %, . Critical values of the 1, sta-
tistic, when the cointegrating regression is estimated, can be found in MacKinnon (1991), those for the fixed

cointegrating vector in Fuller (1976).
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Table 2 contains the outcome for the zero frequency case where the cointegrating regression is run
with intercept and trend, with intercept only, and without any deterministic component. In all three
cases, the "Dickey-Fuller" tests based on the residuals show that a unit root cannot be rejected imply-
ing noncointegration at the long-run frequency.

As already mentioned above, a similar results is obtained if the cointegrating vector is fixed at [1, ~1].
We note that the results for ¢4 ;-1 ., shown in table 2, and the s, " column for ¢, -y, in table 1 are
quite similar. This is no surprise because only the adjustment for seasonal unit roots is different in the
regressions of the tables 1 and 2. in the regressions of tabie 2, we adjust for seasonal unit roots by
prefiltering the data, while in the regressions of table 1 we adjust by including the proper variables in
the regression.

Table 3
. . 1 ..
Tests for cointegration at frequencyi- : biannual?)
1956.1 to 1992.4
Cointegrating regression R2 Auxiliary regression Tests for unit
Regressor Deterministic Deterministic Augmentation ) roots in .
Regressand Y21 components components residuals "ADF
included ln,
¢y -0.1722 1,8D 0.9573 1,2, 3,4 - 2.937
(0.0957)
¢y 1.0647 I 0.9071 1,2,3,4 -2.438
(0.0277)
Coyq 1.0617 . 0.9078 1,2,3 ~2.436
(0.0274)
coy 1.0000 . . 1, 8D 1,2,4 ~3.044>
(fixed)
Coy 1.0000 . . 1 1,2,4 - 3.176*
(fixed)
¢y 1.0000 . . . 1,2, 4 - 3.264*
(fixed)

) £
1) The tests are based on the -augmented Dickey-Fuller regression (v, + v;-1) = 13 (=v,—q ) + 2 bi e+ Vi) ey,
=1
where v, is the residual from the cointegrating regression c, , = deterministic component + § y, , + v, . The ¢ statis-
tic is distributed as the "Dickey-Fuller" described in MacKinnon {1991), those for the fixed cointegrating vectors in
Fuller (1976).
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Based on the residuals from the cointegrating regression of ¢, = —(1 =B+ B2-B3)¢; on yy,=
—(1 - B+ B2 - B3%) y, cointegration at the biannual frequency must also be rejected, as will be seen
from the results in table 3. Including deterministic components does not influence the -outcome. In all

cases, we cannot reject the null hypothesis of a unit root at the fnaquency§1 .

However, if the cointegrating vector is fixed at [1, —1], the results clearly reject a unit root implying
cointegration at the biannual frequency. Again, we observe a close correspondence between the re-
sults for ¢ ,—y2 ¢, @s shown in table 3, and the "z, " column for c; - y; in table 1.

Table 4
. . 1 3 1
Tests for cointegration at frequencyz and 1/ annuall)
1956.1 10 1992.4
Cointegrating regression R2 Auxiliary Tests for unit roots in residuals
Regressors Deterministic regression "HEGY"
Regressand components Augmen-
Y31 Y31 included tation tn, tr, Frznomy
C3¢ 0.4549 0.1193 1,8D 0.9695 3 -4.528* —.0.969 10.779*
(0.0469)  (0.0467)
e34 1.2522 0.4601 I 0.8736 3 -4.393* -2.438 17.998*
(0.0418)  (0.0413)
C3y 1.2230 0.4298 . 0.8636 1,3 -3.336* —1.841 7.372*

(0.0428)  (0.0423)

k

1) The tests are based on the auxiliary regression (w, + w.3) =g (-wyp) +Tg (~wpq) + > by (W + weyn) +ep,
j=

where w, is the residual from the cointegrating regression c3 , = deterministic component + vy ya , 4y ya 1 + w; .

The distribution ‘of the joint F test for n3 n w4 = 0 and the ¢ test on 73 and m4 are given in EGHL. (1993).

Finally, based on the residuals from the cointegrating regression c3; = —(1-B2)c; on y3; =

—(1-B2) y,and y3 .4 , we can test for unit roots at the annual frequenciesi and 3 . The results are
: 4 4

presented as table 4. The regression is run with an intercept and seasonal dummies, with just an inter-
cept, and without any deterministic component at all. The F values allow a clear rejection of a seasonal
unit root at the annual frequencies. A similar, although less unequivocal result is obtained by use of the
¢ statistics on n3 and m4 . All in all, the possibility of cointegration between consumption and income at
the annual frequency is not ruled:out.
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Conclusions

In-this paper, we apply concepts, which were proposed by EGHL (1993), to test for seasonal integra-
tion and cointegration in Austrian consumption and income data. The tests are applied to the logs of
real consumer expenditure and real disposable income covering the time period from 1956.1 to 1992.4.
The results show that both series are integrated of order 1 at the long-run frequency and also at the
seasonal frequencies. This implies that both series are nonstationary, and that the seasonality is sto-
chastic with the seasonal pattern changing significantly during the sample period. This variation in the
seasonal pattern is especially pronounced for the income series. The consumption series has a more
regular seasonal pattern but, here too, the seasonality is far from being deterministic.

The tests for seasonal cointegration show no indication of cointegration at the long-run frequency, nei-
ther with cointegrating vector [1, —1] nor with an estimated cointegrating vector. At the other seasonal
frequencies, we find signs of cointegration. This result is very similar to findings of EGHL (1993) for the
Japanese consumption function.

A really convincing economic rationalization for these findings is still missing. The role of bonus pay-
ments, which are paid out twice a year in Austria, might be a possible explanation. If consumers have
the habit of using these payments, when they occur, to finance their summer and winter holidays, re-
spectively, then seasonal cointegration may result. Especially, since we concentrate in this paper on
consumer expenditure for nondurables and services, this hypothesis might be of some relevance.

Be that as it may, in the light of these findings, it seems doubtful whether it is good practice to consider
seasonality as nuisance component, which only obscures the more important features of a series and
should be removed by adequate adjustment procedures. Just to the contrary, our findings seem to indi-
cate that seasonality is an important feature of economic time series. A careful study of these seasonal
components can produce deeper insight into the generating mechanisms of economic time series.
Valuable information can be obtained from an analysis of seasonally unadjusted data, which would be
lost if seasonally ‘adjusted series are studied.
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