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ABSTRACT

This paper introduces a state space approach for modeling economic time series, which
incorporates many ideas from systems and control theory. In order to allow for system
identification, a canonical innovation state space model has been chosen as the basic prototype
model. Based on this representation, a singular value decomposition based structure
determination and parameter estimation method is given. After the canonical model is
specified, it is transformed into an "internal balanced" form which has been proved to have
many desirable properties. This approach is applied to the well-known Lydia Pinkham data to
illustrate its use and its forecasting accuracy is compared with other time series approaches.

INTRODUCTION

The state space model, one of the most often used tool in system theory, has led up to the
development of many modern control techniques. For example, Kalman filtering, state-
feedback, state-estimator designs. While the advantages of using the state space representation
also for an analysis of business and economic systems have been advocated by several control
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scientists and economists™2, this approach does not enjoy widespread use until recently>*>,
Models in state space representation are found less often in the literature than those in the
popular ARMA type representation.

This paper develops a new state space modeling technique in which many ideas are borrowed
from system and control theory. Numerical linear algebra, especially the singular value
decomposition, plays a central role in it.

STATE SPACE MODEL AND ITS INNOVATION REPRESENTATION

The state space model provides a description of the internal and external characteristics of a
linear, finite-dimensional system. The state of a system represents the maximum amount of
information on the past behavior of the system. It is therefore sufficient to predict the future
response of the system. The state space model of a linear, finite-dimensional stochastic system
is described by the pair of equations

X = AX W, (1a)

Ve = Cxptuy (1b)

where x; is an unobservable state vector that describes the state of the system at time k (dim
X, =n); ¥y is an observation vector (dim y, = m); and uy, wy are zero-mean white noises with
covariance matrices R and R,.

In model (1), except for the observation vector y; and its order m, which are known, other
components, such as n, A, C, Ry, and R, are unknown. Identifiability of such a model is not
given. To make model (1) identifiable, we can consider its innovation representation

Xparpe = AXgge1 ¥BV, (2a)

Ve = Chye 1tV 2

where Xy 1 is the optimum linear estimate of Xy; B is the steady-state optimum filter gain; v
is the zero-mean innovation process with unknown covariance matrix Q; and A, C are assumed
to take the following canonical forms
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where the element 1 in ¢;" is in the column (1+n;+...+n; ), and

T

¢; = [piloamsBu,nl—pﬁ,-zo,m,[3,-2,,12_1,...,
ﬂi’i'l»"i—l‘l’ 0,..,01, if n;, = 0.

The indices {n;} and the entries {By} entering into the above canonical matrices will be
related to output statistics, which can be computed using an identification algorithm proposed
by Tse and Weinert® and the numerically reliable singular value decomposition technique.
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THE COMPUTATION OF SYSTEM MATRICES

Let R =E{yy, 0ykT}. If rij(o) is the i, jth element of R, it can be shown that the following
relation is valid by making use of the structures of A and C

Elil Ezizllﬂdkrg(k"'t) ’ ni>0 ]
rn+t)= , t=1,2,.. (3)
i T By k1), =0

This relation can be used successively for i=1,2...m in order to obtain equations for
calculating the unknown

parameters of the innovation model. For example, for i=1 and t=1,2,...,n;, Eq.(3) is equivalent
to the matrix equation

ry = @,n)B, 4)

where

r, = [rlj(n1+1),...,r1j(2n1)]T

B, = [pIIO’“"Bll,nl—l] !
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(I)l(k) =

_rlj(k) rlj(k+1) r11(2k—1)_
From the definition of the index n,, it follows that the matrix ®,(k) is nonsingular for k=1, 2,...,
ny and is singular for k>n. This shows that if the output correlation sequences r(0), 0=1.2,...,
are used for forming the set of matrices ®,(k), then the correct value of the index n, can be
determined by setting it equal to the rank of the matrix. Once n, is found it is then possible

to compute B, from the Eq. (4).

For i=2,3,...,m, n; and B can be computed in an analogous manner. For example, if i=2, write
(3) for t=1,2,....n;+n, as

r, = q)z(nz)pz (5)
where

ry = [ryfny+ Dyt (20, 40 )]

- T
B, = [ﬁm,m,[321,,,1_1,3220,‘",[322,,2_1]



®,(n,) ) . rzj(k)
rnA2) . rzj(k+1)
rlj(n1+l) r11(2n1)
®,(k) = rlj(n1 +2) . r11(2n1+1)
k) . r@urk=1) o rdngrk) . ryng+2k-1)

As before, n, can be determined from the rank of the matrix ®,(k); and B, can be obtained
from the Eq. (5). The procedure can continue in a similar manner for j=2,3,..,m. Then
n=n;+..+n_, and a canonical form for (A,C) is obtained.

For determining ny, n,, ... ,n, Tse and Weinertd give a procedure which is based on the
computation of determinants. However, this procedure is apparently very fragile from a
numerical point of view’. In practice, the given information is often inexact, and the available
observations are usually noise corrupted, which will easily prevent Tse and Weinert's method
from being really effective. Moreover, in computing the parameters of the model Tse and
Weinert's method only uses the sample information included in the n;xn; upper left submatrix
of @.(k), but better results could be obtained by utilizing the "most essential" sample
information included in the full matrix ®;(k) in a manner that will be made precise below.
Therefore, we need a more robust and informative approach to characterize the ranks of

{®;(k)} and compute their parameters.

Fortunately, the singular value decomposition®, one of the basic and most important tools of
modern numerical analysis, particularly numerical linear algebra, can provide exactly what we
desired: the robustness and the informativeness. It is known that the singular values and
singular vectors of a matrix are relatively insensitive to perturbations in the entries of the
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matrix, and to finite precision errors’. Moreover, the decomposition displays a set of singular
values, mathematically the number of nonzero singular values is corresponding to the rank of
the matrix. The advantage is that the decomposition will not only display the rank but also
display it in a quantitative way. Namely, the set of singular values will be used to determine the
rank as well as to judge the distance of the matrix to a lower-rank one’. Especially, by retaining
the n; dominant singular values and corresponding singular vectors, we can compute the
parameters of the model from the sample information which we call the "most essential" sample
information.

In practice, A and C can be constructed from 4, By ,..., Py, Here we only provide the
algorithmic details for computing $,, because B,, B3 ,..., P, can be obtained in an analogous
manner.

Formally, relation (4) can be solved for §; by computing the product of the inverse of ®;(n,)
and r;. We can accomplish this step through the LU-factorization of ®4(n;) and the forward
and backward substitutions. However, as it has been pointed out above already, such a B, is
not optimal because ®,(n,) only includes partial sample information. A different algorithm is
thus suggested here, which consists of the following major steps.

Step 1: Compute the singular value decomposition of ®;(k) and arrange the singular values of
®,(k) in nonincreasing order, i.e.,

A, ol

@,(k) =UAVT=[U, U] o Ay’
2

where the nyxn; matrix A; contains the dominant singular values and the (k-n;)x(k-n;) matrix
A, contains the smaller singular values. The n, rank approximation is obtained by retaining the
n; dominant singular values and the corresponding singular vectors, i.e.,

o) (k) = U, AV

Making use of the well-known Eckart and Young Theorem?, it can be shown that the optimal
approximation errors in the spectral norm and Frobenius norm are respectively
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min  |®,(0)-9;®)s = o
rank(®'(6)=n,

ng+l

and

k
min  [®,8)-®;®I; = Y o .

rank(@{(k)) =ny i=ng+1

Step 2: Consider the matrix equation
T o*
rl* = U1A1V1 B »
where

ry = [y (7 + 1)yeucsry (1, 4] T

p: = [puosmspu,kul]T
Then [31* can be computed from the relation
B =AYV, =V, N'UTr

where + denotes the Moore-Penrose pseudoinverse.
Step 3: Determine f; as the vector consisting of the first n; elements of By .

Besides the numerically stable singular value decomposition, the proposed algorithm only
requires simple matrix multiplications, so it can be expected that the algorithm is highly
numerically reliable. Moreover, the computed B, is optimal because the most essential sample
information has been used.

B5, B3,....B, can be computed in an analogous manner and finally the canonical form (A,C) is
obtained.

Once n, A and C are determined, it remains to compute the unknown covariance Q of the
innovation sequences v, and the optimum filtering gain B. Let £ denote the covariance matrix
of the states in model (2), then (2) implies
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% = A¥AT + BQOBT
R,=CECT+Q

R, = CA°'S, 0>0

where
S = AZCT + BQ

Note that X is also unknown. S can be computed from the relation

3 . oI
r (D) i
r{ny) /A" A 1
= s. = As,, j=l,.,m.
| | e P
nrml(nm)_ C ,fA By=1
L d

If the canonical form described in the above section is used, then it is easily seen that A=I and

thus s; can be obtained by lagged correlations.

A real Schur decomposition approach is suggested here for calculating B and Q which has its
origin in Laub'®, This approach can be described as follows. First, a 2nx2n matrix @ is
constructed, where n is the dimension of the matrix A:

F-GF%J GFT
-FIj FT

where auxiliary nxn matrices are defined by
F=AT-CTR;'ST, G=CTR;'C, and J = SR;'S”.
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Second, the matrix @ is transformed into the real Schur form

Third, the eigenvalues with magnitudes less than one are collected into the upper left nxn
blocks of the above matrix using our ordering algorithm and an ordered real Schur form is
obtained

A A

N N
0 H,
Fourth, the orthogonal matrix U is partitioned conformably into four nxn submatrices
~ U, U,
021 U .

Finally, the covariance matrix X of the states is obtained by computing the product of submatrix
U,, and the inverse of submatrix Uy,

2 = U,U; .

Correspondingly B and Q can be obtained from

B = (S-ASCH(®R,-CECDH™! .

and

Q = R,-CXc’

The main stumbling block with using this approach is the ordering problem with the real Schur
form'0, An efficient ordering algorithm has been developed to overcome this obstacle!.

BALANCED REALIZATION OF MODEL

The state space model obtained in the above has a canonical representation which is most
parsimonious in the number of parameters. To have a system representation with the least
possible number of parameters has been recognized as important in system identification
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problems. However, a possible disadvantage of such a representation is that it is more
susceptible to numerical errors>12. To overcome this deficit, it is necessary to convert the
canonical model into a model which has a good numerical behavedness before it can be used
for forecasting. For this reason, the theory of balanced realization, originally proposed by
Moore!? and generalized by others, is introduced here.

The main idea of balancing is to find a coordinate system in the state space where each state
is controllable as well as observable. The most important application of balancing is in model
reduction where the states of the balanced form which are least controllable and observable
are truncated. However, the problem of model reduction is not of real interest for us because
our canonical model has been in a minimal dimension and generally needs not to be reduced.
What we are concerned with are other useful properties of balanced form such as the
numerical robustness” 1213, The most commonly used algorithm for state space balancing is that
of Laub'*. Because of lack of space, we omit the algorithmic details here and refer the reader

to Laubl?,

A SUMMARY OF THE STATE SPACE MODELING METHODOLOGY

Having introduced the details of state space modeling for time series, we now outline this
methodology, which consists of the following main steps:

(a) Transformation of the data into stationary time series: This step involves differencing
(regular and seasonal) of each time series and the computation of the autocorrelation functions
to test the series for stationality. The procedure is similar to that of Box and Jenkins!>, In many
economic time series, it is also advantageous to log transform the series before differencing.

(b) Identification of the canonical state space model: This step involves the determination of
model order n and then the computation of system matrices A, C, B and covariance matrix Q.
The value of n can be determined using the numerically reliable singular value decomposition
technique, and A and C can be computed using a singular value decomposition based
algorithm. B and Q can be obtained by the real Schur decomposition method.

(c) Balanced realization of model: This step accomplishes a coordinate transformation using
Laub's algorithm14 to get an internally balanced model with good numerical characteristics.
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(d) Diagnostic checks on model adequacy: To see whether the estimated model adequately
represents the given set of data, diagnostic checks should be performed. These tests can be
done based on some error measure criteria or on an analysis of the cross-correlation matrices
of the residuals!®. If any inadequacy is detected, the above iterative cycle is repeated until a
suitable representation is found.

(e) Forecasting: Once the state space model has been identified and identified, it can be used
to forecast all of the time series into the future. This can be accomplished by first calculating
XN+1|N from

xk+l|k = (A —Bc)xlqk—l + B.Yk; xOl—l =0 ’ k=0,1,...,N,

where N is the number of observation data used to build model. Then the predicted values are
generated by

yN+klN = CxN+ﬂN = CAkulxN-%'llN ) k=1,2,...,

A CASE STUDY

In this section the well-known Lydia Pinkham advertising and sales series are used to illustrate
the ideas presented in this paper. Several alternative models were proposed to describe these
data. A Box-Jenkins time series approach is suggested by Helmer and J ohansson!” in which
univariate models and two candidate transfer functions are modeled on the annual data. A joint
model approach is used by Heyse and Wei'® in which a bivariate ARMA model is identified,
estimated and checked. Here, we use the state space approach to model the same data. For
comparison with the results of Helmer and Johansson and Heyse and Wei, the first 40 annual
observations (1907-1946) are used for the identification and estimation procedure. The

remaining 14 are held back to study the forecasting performance of models.
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Like Helmer and Johansson and Heyse and Wei, we have also chosen to model the first
differences of the data using the state space approach. Applying the previously discussed
computation algorithms we obtain the following estimates for the system matrices(For
completeness, both canonical and balanced forms are given) Canonical representation:

0 1 0
A =(-04075 00060 O |,
0.0094 0.3445 0.1046

-0.2607 0.5147
B = {-0.4985 0.1820},
0.0385 0.4841

c 100 10* 3.9506 2.2355
= ’ = X .
001 2.2355 5.2126

Balanced representation:
0.1925 0.7425 -0.1015
A = |-0.5460 -0.1641 -0.0849|,
0.1378 0.3276 0.0821

-0.3921 0.7271
B =|-0.5885 -0.0493|,
-0.1758 -0.3583

‘- 0.8050 -0.1586 02189 .
10.4355 -0.2253 0.4363]

In order to check for model adequacy, we compute the cross-correlation matrices of the
residuals for lags 1 to 12. All residual cross-correlations lie inside the range of +2 standard
derivations(= =*0.32), Therefore, the estimated model is considered as an adequate
representation of the data under analysis.
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For the 14 one-step-ahead advertising forecasts, summary statistics for the forecasting errors
are shown in Table 1 for Helmer and Johansson's univariate ARMA model (UARMA), Heyse
and Wei's bivariate ARMA model (BARMA), and our state space model(SP).

For the 14 one-step-ahead sales forecasting, summary statistics for forecasting errors are listed
in Table 2, where TF1 and TF2 are the two transfer function models suggested by Helmer and
Johansson.

CONCLUSION

An innovation state space approach to the modeling of economic time series is shown. The
numerically reliable singular value decomposition technique is used to determine the structures
and parameters of models. This approach is applied to the well-known Lydia Pinkham data,
showing that its forecasting accuracy is comparable to other time series approaches.

Table 1. Summary statistics for errors in forecasting advertising

Advertising UARMA | BARMA SP
Number of forecasts 14 14 14
Mean squared error 10247.00 9224.00 8361.00
Maximum error 171.00 162.00 164.39
Median error -44.50 -35.00 -21.23
Minimum error -191.00 -147.00 -142.89
Mean error -42.10 -6.60 -10.65 1




Table 2. Summary statistics for errors in forecasting sales
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Sales TF1 TF2 BARMA SP
Number of forecasts 14 14 14 14
Mean squared error 15177.00 14044.00 15021.00 13905.00
Maximum error 212.00 221.00 227.00 184.11
Median error -50.00 -58.50 3.00 -20.34
Minimum error -213.00 -195.00 -208.00 -220.99
Mean error -49.10 -43.80 -25.20 -51.08

Unlike the computationally-demanding maximum likelihood method, the model-building
procedure introduced in this paper is easy to carry out computationally. It is nothing but a
summary expression of the data in a mathematically consistent representation. It only uses little
more than linear algebra, and is therefore not too difficult to be understood. Because of the
ease of model building by this approach, the approach may be used in other ways, for example,
as a way of generating initial guesses to be further improved by the maximum likelihood

method.
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