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FRANZ R. HAHN, GERHARD THURY

Structural Time Series Models for the Austrian and
German Industrial Production

1. Introduction

In this paper we adopt the structural methodology proposed, among others, by Harvey (1989) for
modeling the monthly dynamics of the Austrian and German industrial production. In a recently
published paper we concluded that, for both countries, the ARIMA ’airline’ model [i.e. ARIMA
(0,1,1)x(0,1,1)¢] seems to be a rather good representation of the dynamical behavior of the monthly
industrial production (Hahn and Thury 1992). However, we also stressed ‘in this paper that, modeling
these time series, the structural approach seems to be superior to the ARIMA philosophy. The reasons
why we lean towards the structural approach are the following: First, structural models -allow for a
decomposition of a time series into "stylized facts’ associated naturally with its dynamics. These stylized
facts are trend, cycle, seasonal, and irregular component, all of which are of interest to economists in
themselves. Knowing the dynamics of these components in detail is very helpful for making sound
predictions on the basis of univariate time series models. In addition, within the structural framework the
model selection procedure is similar to that employed for regression models in econometrics (Harvey
1989). Second, the ARIMA ’airline’ model was originally designed to represent the dynamics of time
series whose salient features are trend and seasonality. As production data, in particular industrial
production, become more and more volatile, the cycle becomes more and more an intrinsic part of this
type of time series. As for modeling the dynamics of a time series with a cyclical component, there is
convincing evidence that univariate structural models are better qualified than univariate ARIMA models
(see Harvey and Todd 1983, and section 3 of this paper).

The paper is organized as follows: In section 2, the basics of the structural approach as a class of
unobserved component models which explicitely allow for modeling the stylized facts’ of the dynamics
of time series are introduced. In section 3, the estimation, testing and evaluation procedure applied is
presented and the estimated models and their statistical properties are discussed. Section 4 presents
conclusions and announcements of further research.



2. Modeling Unobserved Components: The Structural Approach

Loosely speaking, the structural approach refers explicitely to the traditional view that an observable
economic time series y(t) can be decomposed into various unobservable components such as trend,
cycle, seasonal and irregular component. Basically, structural time series ‘models can be seen as
regression models in which the explanatory variables are functions of time and the parameters are time-
varying (Harvey 1989). For handling such unobserved component models from an estimation point of
view, there are a humber of techniques available (see, for example, Nerove, Grether and Carvalho
1979). Within the structural framework, the ’state-space-Kalman-filter approach’ is the most common
and appealing one. Thereby, the structural model is first put into the state-space form with the
unobserved compohents constituting the state of the system. Then, the Kalman filter is applied for
falicitating the formulation of the likelihood function, for updating the various components and for the
extrapolation of the components into the future. For a thorough introduction into structural time series
models, state-space models, and the Kalman filter we refer to Harvey (1989).

As for the basic structural model (BSM), it consists of a trend, a seasonal and an irregular component.
In mathematical terms, this reads as follows

(1) Vi=m+nte t=1,...,T

where y, is, in most cases, the logarithm of the observed value, , is a trend, v, is the seasonal and ¢, the
irregular component, respectively. The irregular component is a white noise ‘disturbance term with
variance o2,

The trend-generating process is designed as follows:
(2) = 4 + Bl-‘l + e T~ NID (090217)
(3) B[ = 61.1 + i}. §'t ~ NID (0,0'23-)

where NID(0,0%) denotes a normally distributed, serially independent, random variable with mean zero
and variance ¢2. 7, and {; are assumed to be mutually uncorrelated. The trend component as modeled in
(2) and (3) obviously follows a random walk with a variable drift.

The seasonal component v, is usually modeled by a series of sines and cosines. If there are s seasons
inthe year, then

; s/2
@ N = ﬁ:'yn
j=1

and v, is a non-stationary cycle
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with N, = 2 aj/s, |=1, ..., °/2. w, and w are taken to be uncorrelated, 7y @ppears by construction (see
Harrison and Akram 1983).

Inthe literature, the variances 6%, ¢2,, 0®.and ¢2,, are usually referred to as hyperparameters.

Harvey (1989) shows that the ARIMA ’airline’ model and the BSM have a lot in common in terms of
statistical properties. In fact, under certain restrictions (6%, = 0 and 0%, = 0), the airline model is
equivalent to the BSM (for details, see Harvey 1989). More important from a practioner’s point of view,
both models are obviously designed to approximate time series whose dynamics are driven by trend
and seasonality only. In this respect, it comes as no surprise that the fit of the BSM and the ARIMA
‘airline’ model, applied to our data set, is basically the same (for details, see the following section).
However, as we will show in the upcoming section, for both countries the BSM extended by an additive
cyclical component proves to be the better, if not the best, univariate candidate for representing the
dynamical structure of monthly industrial production. The cycle-generating process used to enhance
the BSM in our approach is modeled as follows:

% [ cosh, sin), Yoq | K
(6) o] =P | —sinx, cosn, s + o | h - NID (0,02,)

where ¥, is the cyclical component, « and «; are assumed to be uncorrelated. The parameters 0 < A, <
mand 0 = p < 1 represent the frequency of the cycle and the damping factor of the amplitude,
respectively.

3. Estimation, Testing, and Model Evaluation

As already mentioned, data on industrial production belong to that category of economic time series,
for which cyclical components are of considerable importance. Therefore, the estimation of structural
time series models should be an appropriate approach for modeling these series. These models will
provide information, which is not available from standard decomposition methods, where no attempt is
made to identify cyclical components.



3.1 Hyperparameters of the models

Table 1 presents estimates for the hyperparameters of structural time series models for the production
in the manufacturing industry of Austria and Germany?").

These models are estimated by the estimation procedure as outlined in the previous section, that is to
say, by exact maximum likelihood on the state-space-Kalman filter basis. The data base consist of
calendar adjusted monthly data covering the period 1962 to 1991. With noisy monthly data, it is
obviously too optimistic to believe that 'the data can speak for themselves’. Unrestricted estimation
gives unsatisfactory results. In order to improve the results, we have to impose some restrictions. A
natural thing to do is to set the variance of the trend level equal to zero, what guarantees smoothness of
this component. This formulation is adopted by Kitagawa (1981) and Kitagawa and Gersch (1983).
Imposing this restriction improves the results substantially. We obtain smooth trends and additive
cyclical components, which look extremely plausible. The average length of these cycles is
approximately 5 years. Tests reveal that the estimation results are insensitive to moderate changes in
the frequency parameter A\, from which the average cycle length is computed. In order to reduce the
number of parameters, which have to be estimated, we pre-specify the average cycle length with
5 years. Inspection of Table 1 reveals that two of the estimated hyperparameters, namely the variances
of the trend slope and of the seasonal component, are numerically rather small. This fact might explain
why a simple airline model is a good description of the two production series under analysis, as it is
shown in Hahn and Thury (1992). As mentioned in the previous section, an airline model is a special
case of a BSM with certain hyperparameters restricted to zero. Although ARIMA models and structural
models often seem to describe the data equally well, the latter have some advantages for the
practioner. They provide directly information about the decomposition of a series into trend, cyclical
and seasonal components, which is either not available at all from ARIMA models or is obtainable only
after additional computation. Moreover, specification of an ARIMA model can be hazardeous. It is based
on the inspection of the correlogram. In practice, it is often difficult to interpret the correlogram, and
there may exist a wide range of models consistent with it. The problems are particularly acute when the
observations have been differenced, what is generally the case with economic time series.

3.2 Statistical Properties of the Estimated Models

The coefficient of determination R? is of little value in the context of time series models. The measures
R2, and R%g provide goodness of fit criteria which contain useful information for time series data. The
baseline in R2; is the random walk with drift, and any model which gives a worse fit, i.e. has R, < 0,

1) The structural models are estimated with the PC-STAMP program by S. Peters, B. Pesaran and A, Harvey.



Table 1

Hyperparameters of the estimated structural time series models for the Austrian and
German industrial production

AUSTRIA GERMANY

62, = 0 2, = 0

2, = 20 (:10) 02 = 10 (-:00)
a2, = 40 (:00) a2, = 50 (-10)
52, = 73.30 (65.00) 52, = 72.50 (61.50)

) = 96 (02) ? = 97 (:02)
Xe = 1047 W = 1047

62 = 55.10 (15.20) 2 = 71.00 (16.80)

¢ = 052 G = .052

R2 = .998 R2 = 993

R2p = .938 RZp = 915

R2g = 437 R2g = 224

QR4 = 13.81 Q@4 = 34.02

T = 356 T = 357

Values in parentheses are standard errors. The estimates of the variances and their corresponding standard
errors were multiplied by 108.



should not be entertained. Our estimated models perform much better than a random walk with drift.
But, for monthly data with strong seasonal effects present, a random walk is not a very stringent
criterion. For such series, seasonal mean models proved to give quite a good fit. The measure R3g
adopts this model as baseline. Any model, which has R2g negative, can be rejected, whereas if R2 is
positive but close to zero the gain is obviously marginal. For our models, we observe substantial gains
in comparison to seasonal mean models. They yield a reduction in prediction error variance of more
than 40 and 20 percent, respectively.

Additional insight into the quality of a model can be gained from an analysis of the corresponding
residual series. The Q statistics in Table 1 do not point to a presence of excessive autocorrelation. Tests
for normality show that the hypothesis of normality cannot be rejected. Additionally, we find no signs of
skewness, curtosis or heteroscedasticity. All in all, we observe that, while both models have acceptable
statistical properties, those for the model of the Austrian industrial production seem to be significantly
better.

3.3 Extracted Components

Figure 1 depicts estimates for the trends in Austrian and German industrial production. Restricting the
variances of the levels to zero produces the expected smooth trends for both countries.

The long-term development of industrial production seems to have been significantly different in both
countries. Starting from different production levels in the early sixties, this gap is reduced completely
over the years. The process of catching-up does not take place steadily over time. We observe periods
of faster catching-up such as the years from 1968 till 1972 and from 1985 onwards and periods, where
the gap remains unchanged.

Figure 2 shows estimates of the cyclical components which are present in Austrian and German
industrial production.

As already mentioned, we work with additive cycles with an average length of five years. The extracted
cyclical components are almost identical. The correlation is 0.75. This finding should be no surprise to
insiders, who know about the close connections between Austrian and German industry. The numerical
order of magnitude of the cyclical components is substantial. Amplitudes of a magnitude up to 10
percentage points are observed in the early seventies. In the recent past, we find indications for
decreasing amplitudes of the cyclical fluctuations especially for Germany. Obviously, Germany was
more successful than Austria in reducing the share of primary industries, which seem to be particularly
exposed to business cycle fluctuations.
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Graphs of repetitive series like seasonal components are rather unattractive. We refrain therefore from
presenting graphs of the extracted seasonal components. These components evolve over time. Since
the estimated variance is very small, the changes in the seasonal components stay within narrow
bands. It should be sufficient to tabulate the seasonal effects in industrial for a single year, just to give
an impression of the shape of the seasonal pattern. Estimating in logarithms means that the models are
multiplicative. Exponentiating the estimated seasonal effects gives the following sets .of multiplicative
seasonal factors which are shown in Table 2.

The pattern of seasonal effects is identical in the two countries, with the amplitude of fluctuations being
somewhat bigger for Austria.

Figure 3 finally shows estimates for the irregular components. We see that these irregular components
are stationary white noise sequences for both countries.

3.4 Forecasting Performance

A plot of the cumulative sum (CUSUM) of standardized, one-step-ahead prediction errors is a simple
device to gain insight into the forecasting performance of a model. To calculate cumulative sums of
prediction errors, we estimate the models until 1987:12 and then make one-step-ahead forecasts until
1991:8. The plot of the corresponding cumulative sums is given in Figure 4.

The 5% ssignificance lines are never crossed but, ‘especially for the Austrian industrial production, we
observe a steady rise in the cumulative sum indicating a tendency to underpredict the level of industrial
production. This result is no surprise because, from 1988 onwards, Austria experienced a relatively
unexpected, substantial increase in production activity.

Numerical measures of forecast accuracy provide more detailed and exacter information than
cumulative sums of prediction errors. Basis for the calculation of these measures are month-to-month
log-changes of the above mentioned one-step-ahead predictions.

Several numerical measures are collected in Table 3. Root mean square error (RMSE) and mean
absolute error (MAE) are absolute measures, which become larger with increasing deviations between
forecasts and realizations. The inequality coefficient (U) is a relative measure. It compares the
performance of a particular method with naive no-change extrapolations. Values smaller than 1 indicate
superiority over no-change extrapolations. The decomposition of the forecast error into a bias (UM),
regression (UR), and disturbance proportion (UD) tells us whether this error contains systematic
components, which might be reduced by applying a linear correction. For perfect forecasts, the slope
coefficient in a regression of realizations on predictions should be unity. Inspection of Table 3 reveals
that all calculated measures point to a satisfactory forecasting performance of the estimated structural
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RMSE
MAE

CORRELATION COEFFICIENT
REGRESSION COEFFICIENT

Measures of Forecast Accuracy

AUSTRIA

.025
.020

.320
.000
.003
.997

.947
1.020

GERMANY

.023
.019

408
.002
.091
.907

921
.882

Table 3
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time series models. The regression coefficient of 1 in the case of the Austrian industrial production,
indicating perfect forecasts, seems to be in conflict with the outcome of the above CUSUM test, which
signals systematic underprediction. These two results are not fully comparable, however. We analyze
levels for the CUSUM test and use changes of these levels in the regression.

More interesting than one-step-ahead forecasts of the original series, which could be obtained from
other sources also, are extrapolations of trends and cyclical components for longer forecast horizons.
Forecasts of these component series can only be derived from structural time series models what
makes up one of the major advantages of this model type. Again, we estimate the two models until
1987:12 and then derive forecasts for the trend and cyclical components until 1991:8. These forecasts
are confronted with the outcome from an estimation of the models until 1991:8. The results are shown in
Figure 5.

We see that, for both countries, the slope of the trend lines is underpredicted with the underprediction
being more severe for Austrian industrial production. Really astonishing, however, are the
extrapolations of the cyclical components in two countries. The extrapolations for the cyclical
component of the Austrian industrial production seem to be extremely accurate while, for Germany, we
observe bigger deviations between extrapolations and realizations. We do not believe that these
observed discrepancies point to an inadequacy of the estimated model. They are obviously caused by
the palitical change which took place in that country. They might be considered as measure for the
effects of the German reunion on industrial production.

4, Conclusions

In this paper we present structural models for the manufacturing sector of Austria and Germany which
allow for the explicite decomposition of the monthly production data into a trend, a cyclical, a seasonal,
and a irregular component. The approach chosen is a suitable vehicle to deepen our understanding of
the dynamical structure of industrial production. In particular, it sheds new light on the relationship
between the long and the short run dynamics of Austrian and German industrial production. It is the
qualitative pattern of the trend and the cyclical components, provided by these models, which
underlines the high degree of congruence between the Austrian and the German industrial sector. But it
is also the pattern of these very component series which brings out the differences between the
Austrian and German industry over the short and long run. It remains to be seen if plausible
explanations can be found for the similarities as well as for the discrepancies observed. Only future
research can tell. However, what we can tell at this very stage of research is that the estimated models
perform outstandingly well in terms of forecasting accuracy over the short and medium run.
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GERHARD THURY

Forecasting Performance of Structural Time Series Models
A Case Study for Austrian and German Industrial Production

In a recent paper, Hahn and Thury (1992) present estimates of structural time series models for the
Austrian and German industrial production. A comparison of the forecasting performance of this
model type with that of traditional univariate time series models might be informative. As measure of
reference, we use the multiplicative seasonal ARIMA model, which is widely used in applied economic
forecasting. We have 372 monthly observations on the indices of industrial production in Austria and
Germany. Since calendar variations strongly influence production data, the two series are first
adjusted for these effects before the different time series models are estimated. Details about this
calendar adjustment can be found in Thury (1989). Since the number of observations at our disposal
is relatively large, we can retain a substantial portion of these observations in order to test the
forecasting performance of the estimated time series models. Thus, for the different forecasting
methods and forecasting horizons, we generate 120 genuine ex-ante predictions covering the period
1983:1 to 1992:12 which, then, form the ‘basis for an evaluation of the forecasting accuracy of the
methods under test. We are convinced that 120 observations should be sufficient to derive reliable
estimates for various test statistics of forecasting performance.

The organisation of the paper is as follows. We start out with a short description of the measures of
forecasting accuracy which we shall employ in this paper. The main part of the paper consists of a
presentation and interpretation of our empirical results. In a short concluding section, finally, we
summarize our main findings.

Theoretical considerations

In assessing the forecasting accuracy of the time series models under consideration, we closely follow
the path proposed by Witt and Witt (1992). We begin with a detailed analysis of the committed
forecast errors. Since it is often claimed, however, that directional accuracy is, at least, as important
as the magnitude of the forecast error, we investigate the performance in this respect also very
carefully.



Measures of numerical accuracy and statistical tests

In order to evaluate the accuracy of a forecasting method, it is necessary to have a yardstick. There
exist various measures of forecasting accuracy but, unfortunately, none of them is universally
accepted. Following Witt and Witt, we shall concentrate on two relative measures of forecasting
accuracy, namely the mean absolute percentage error andthe root mean square percentage error.

The mean absolute percentage error (MAPE) is given by

n
(1) MAP =% E Leel 400,
t=1

1P,

where | e,| denotes the absolute value of the forecast error and » is the number of forecasts. The
forecast error is given by

2 e = IP-1Ip,,

where I?l‘t and IP, symbolize predicted and ‘actual values -of the index of ‘industrial production,
respectively. MAPE is a measure of overall accuracy which offers an indication of the degree of
spread between predicted and observed values. All forecast errors are assigned equal weights. Table
1 .contains typical AMAPE values for industrial data ‘and their interpretation, which were published
originally by Lewis (1982).

Table 1
Interpretation of typical MAPE values

MAPE Interpretation

< 10 precent Highly accurate forecasting
10 — 20 percent Good forecasting

20 —-:50 percent Reasonable forecasting

> 50 percent Inaccurate forecasting

Reproduced from Witt and Witt(1992), p. 86

The root mean square percentage error (RMSPE) is-given by

(3) RMSPE=




The RMSPE is also .a measure of overall accuracy which provides an indication of the degree of
spread. But, contrary to MAPE, large errors are penalized by additional weight.

In studies of forecasting performance it has been common practice for a long time to simply present
accuracy measures in tabular form. Supplementing these presentations by statistical tests will provide
additional ‘insight and might allow firmer conclusions. An approach, which seems to be especially
adequate for the purposes of this paper, is the ANOVA technique because it allows for varying
numbers of factors to be tested simultaneously. Thus, we can test ‘whether there exist significant
differences :between forecasting methods, forecasting horizons, and production countries. ‘A certain
drawback of the ANOVA approach lies in the fact that it may indicate significant differences among
factor levels, but not between which levels if there are more than two. Multiple comparison tests, as
for example Scheffe's test, or pairwise r-tests can provide answers to open questions of this type.

Measures of directional accuracy

Numerical accuracy is one of the desirable features of a forecast, directional accuary is another,
perhaps even more important, property. With directional .accuary, we must distinguish between
direction of change -errors (sometimes also called tracking errors) and trend change errors. A direction
of change error occurs if the forecast misses the actual direction of change. There are several
possibilities. The predicted change is positive and the actual change is negative or vice versa.
Additionally, -an observed change in direction can be missed by the forecast or a change in direction
can be predicted which, then, does not realize. We compress these different possibilities into a single
measure of direction of .change error by calculating the percentage of correctly predicted changes of
direction.

Instead of just looking generally at directional accuracy, it may be informative to analyze the situation
more closely by -examining trend .change accuracy. A trend change error is observed when either a
forecasting method fails to predict -a realized change in the trend (a missed trend change) ‘or
incorrectly predicts a trend change (a false signal). Trend changes may be divided into downturns and
upturns, and varying numbers of observations can be employed in their definition. Following Witt and
Witt, we define them as follows:

y ) { Z<y, = Downturn (DT),
0 < 1< an
Yn-2 <Yn-1<Yn Z>y, = Nodownturn (NDT),
and
Z>y, = Uptumn (UT),

oS 4> and
Yn-2>Yn-1>DVn {ZSy,, = No upturn (NUT),



where y¢, y2, . . ., v, denote given past realizations of a time series, and Z = y,+ is the first future
value of this series. Four consecutive observations are used to define downturns and upturns. A
downturn is observed when an increasing trend has been established by the two observations
preceeding the current one and the following observation is smaller than the current one. Similarly, an
upturn occurs when a decreasing trend has been established, and the following observation is greater
than the current one.

Empirical results

In the following, we analyze the forecasting performance of four univariate time series models:

basic structural model (BSM);
structural model with :additive cycle (SMA4C);
structural model with additive cycle and damping factor 1.00 (SAMACX);

Box-Jenkins airline model (4RIMA).

These four model versions are used to generate predictions for the Austrian and German industrial
production with forecasting horizons of 1, 6, 12, 18, and 24 months covering the period 1983:1 to
1992:12. In order to obtain these forecasts, the models are always reestimated for the relevant
sample periods. Only information, ‘which would have been available already at the date of the
forecast origin, is utilized. The predictions, which are analyzed in this paper, are thus genuine ex-ante
forecasts?). '

Numerical measures of forecasting accuracy

Tables 2 and 3 contain measures of forecasting accuarcy for the different sets of predictions. Table 2
summarizes the resuits for RMSPE, Table 3 those for AMAPE. Generally, both RMSPE and MAPE are
subject to distortion caused by outlying observations, in that one or two poor forecasts will affect these
average error measures. However, given the large number of forecast :errors under analysis, this is
unlikely to be a serious problem here.

Before entering into a detailed discussion of the different accuracy measures, some form of general
assessment might be useful. Comparing the AZ4PE's in Table 3 with the typical values given in Table
1, we see ‘that, ‘according to this standard, even the 24-months-ahead predictions figure as highly

1 In-the ‘computations ‘for this paper the PC versions ‘of the following ;programs -are :applied: SCA, SPSS, STAMP, and TSP. |
wish to thank Sonja Patsios for her short, but very informative introductory course to SPSS.



accurate. Our judgement is less euphoric. We would say that forecasts with a horizon of up to 12
months might provide valuable information.

Table 2

Forecasting performance by forecasting horizon, forecasting method, and production country: RMSPE

Forecasting horizon Forecasting method Production country
(months) Austria Germany
1 BSM 1.644(1) 1.734(1)
SMAC 1.657(2) 1.741(2)
SMACX 1.674(3) 1.765(4)
ARIMA 1.695(4) 1.744(3)
6 BSM 2:675(1) 2.605(1)
SMAC 2.757(2) 2.870(2)
SMACX 2.856(4) 3.157(4)
ARIMA 2.761(3) 2.933(3)
12 BSM 3.626(1) 3.002(1)
SMAC 3.658(2) 3.678(2)
SMACX 3.901(3) 4.279(4)
ARIMA 4.039(4) 3.750(3)
18 BSM 4.793(1) 3.934(1)
SMAC 4.891(2) 4.943(2)
SMACX 5.157(3) 6.006(4)
ARIMA 5.613(4) 5.090(3)
24 BSM 5.693(2) 4.377(1)
SMAC 5.589(1) 5.943(3)
SMACX 5.818(3) 7.421(4)
ARIMA 6.714(4) 5.888(2)

Now, ‘we shall turn to a detailed analysis of these accuracy measures. As expected has the length of
the forecasting horizon the biggest effect for accuracy. Both measures, RMSPE and MAPE, give
identical results in this respect. The longer the forecasting horizons the larger are the errors, although
the differences for longer horizons (18 and 24 months) are less pronounced. The different forecasting
methods also give rise to variations in the size of the forecast errors. The observed differences are
however by far less significant than in the case of forecasting horizons. Additionally, we observe here
slight discrepancies between the results for Austria and ‘Germany. For Germany both measures,
RMSPE and MAPE, vyield identical results. Here, the ranking of forecasting methods is unegivocal.
BSM is best, followed by SMAC. It is perhaps a little surprising that ARIMA outperforms SMACX. For
Austria, the outcome is slightly more controversial, .as we observe certain differences in the ranking
according to RMSPE and MAPE. Relying on RMSPE's, the ranking is identical to the German one apart



from the fact that, in Austria, the ARIMA model gives the worst forecasts. The MAPE based results
also show that the structural time series models clearly outperform the traditional ARIAMA4 ‘model. Only
the ranking within the group of structural models varies somewhat between the RAMSPE and the MAPE
results.

Table 3

Forecasting performance by forecasting horizen, ferecasting method, and production country: MAPE

Forecasting horizon Forecasting method Production country
{months) Austria Germany
1 ' BSM 1.355(1) 1.382(2)
SMAC 1.373(3) 1.378(1)
SMACX 1.372(2) 1.389(4)
ARIMA 1.393(4) 1.388(3)
6 BSM 2.125(3) 2:083(1)
SMAC 2.053(1) 2.226(2)
SMACX 2.119(2) 2.511(4)
ARIMA 2.221(4) 2.228(3)
12 BSM 3.192(3) 2.498(1)
SMAC 3.026(1) 3.069(2)
SMACX 3.138(2) 3.556(4)
ARIMA 3.592(4) 3.176(3)
18 BSM 4.127(1) 3.245(1)
SMAC 4.179(2) 4.143(2)
SMACX 4.286(3) 4.919(4)
ARIMA 4.905(4) 4.306(3)
24 BSM 4.794(1) 3.583(1)
SMAC 4.853(2) 4.926(3)
SMACX 4,996(3) 6.217(4)
ARIMA 5.782(4) 4.835(2)

Summarizing the outcome of this ranking exercise, one might say that, in both countries, a basic
structural time series ‘model gives the predictions of industrial production with the smallest forecast
error. This result is somewhat surprising. Intuitively, one would expect that the explicit introduction of
a cyclical component should improve the tracking performance of @ model. But, although estimates of
such cyclical components may provide valuable -qualitative information on the current state of the
business cycle, their extrapolation into the future seems to be too unreliable in order to give rise to
improved quantitative forecasts. This problem becomes particularly visible, if the cyclical component
enters a model in undamped form, as it is the case in SMACX.



Figure 1

Main effects for different factors
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ANOVA results and statistical testing

Many empirical studies of forecasting performance present the results in terms of the :accuracy
measures considered. Often however additional analysis, such as an application of the ANOVA
technique, might provide valuable further insight. There exist simple graphical techniques, which
allow to decide quickly whether such further analysis is worthwhile or not. Figures 1 and 2 contain
such simple graphs. In Figure 1 we depict the main effects for different factors individually. Thus, we
have ‘only .one line in a graph. If this line slopes, this is an indication for the .existence of a significant
effect of a particular factor. The steeper the slope, the more significant the effect will be. If the line is
horizontal, no significant effect is present. In Figure 2 we depict interaction effects for pairs of factors.
Consequently, we have two lines in .a graph. If these lines are parallel, no interaction between the



factors occurs. If these lines intersect, significant interaction between two factors is present. Cursory
inspection of these graphs provides some evidence for the existence of both main and interaction
effects. Thus, further analysis seems to be worthwhile.

Figure 2

Interaction effects for different factors

Method 'vs ‘horizon

RMSPE MAPE

= | | ——=

e ———

Methed vs country

RMSPE MAPE

Horizon ‘vs :country

RMSPE MAPE

Tables 4 and 5 present the outcome of an application of the ANOVA technique to RMSPE's and
MAPE's. In each ANOVA table, we investigate if any of the three factors (forecasting method FJM,
forecasting ‘horizon H, production country C) or interactions of these three factors have a significant
effect on forecasting accuracy, as measured either by RMSPE or MAPE. FM has four levels, H five,
and C two. Contrary to the above ranking example, the ANOVA results for RMSPE's and MAPE's are
fully identical. In both cases, we find statistically significant effects for two of the three factors, namely
for forecasting methods (FM) and forecasting horizon (#). The production country has no effect on the



accuracy of the forecasts. There does not exist a statistically significant difference in the size of
forecast errors for Austria and Germany. Of the three possible two-way interactions only one s
significant, namely that between forecasting methods and production country. This implies that there
exists a significant difference in the performance of the different forecasting methods in the two
countries under study. We did not have enough data to test for the existence of a three-way

interaction.

ANOVA results for pooled data of Austria and Germany: RAMSPE

Source -of variation

Main effects
Forecasting methods
Forecasting horizon
Production country

Two-way interactions
M -H
FM -C
H-C

Explained

Residual

Total

Source of variation

Main effects
Forecasting method
Forecasting horizon
Production country

Two-way interactions
FM -H
M ~C
H-C

Explained

Residual
Total

Sum of

squares

94.661
3.647
91.012
0.002

4.046
1.945
1.994
0.107

98.707
1.593
100.290

Sum of

squares

72.008
2.342
69.582
0.085

3.542
1.529
1.821
0.191

75.550
1.112
76.661

Degrees of
freedom

8
3
4
1

19
12
3
4

27
12
39

Degrees of
freedom

8
3
4
1

19
12
3
4

27
12
39

Mean square

11.833
1.216
22.753
0.002

0.213
0.162
0.665
0.027

3.656
0.132
2.572

Mean square

9.001
0.781
17.395
0.085

0.186
0.127
0.607
0.048

2.798
0.083
1.066

F

890.704
9.217
172.493
0.012

1.614
1.229
5.039
0.203

27.715

ANOVA results for pooled data of Austria and Germany: MAPE

F

97.171
8.427
187.792
0.917

2.012
1.376
6.553
0.517

30.207

Table 4

Significance
of F
0.000
0.002
0.000
0.915

0.199
0.363
0.017
0.932

0.000

Table 5

Significance
of F
0.000
0.003
0.000
0.357

0.108
0.295
0.007
0.725

0.000
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The above ANOVA results tell us only that there exist significant differences in forecasting accuracy
for different forecasting horizons and different forecasting methods. However, they provide no ranking
for different levels of a particular factor. Thus, if a significant factor has more than two levels, further
statistical tests become necessary in order to find out which of these levels are different from each
other.

Table 6

Modified pairwise t-tests for differences in accuracy between forecasting methods: pooled sample

RMSPE

BSM SMAC SMACX ARIMA
BSM :
SMAC 3.744* :
SMACX 8.051* 4307 :
ARIMA 6.244* 2.500 1.807
MAPE
BSM SMAC SMACX ARIMA
BSM :
SMAC 2.862 :
SMACX 6.139™ 3.277* :
ARIMA 5.462* 2.600 0.677

* indicates 5% level of significance,
** indicates 1% level of significance

Of our two significant factors, forecasting horizon has five and forecasting method four levels. In
order to ‘determine .a hierarchy among these levels, we apply various alternatives of multiple range
tests (among them Scheffe's test). Only for forecasting horizons significant differences are revealed
by these tests. MAPE's and RMSPE's are different for each particular forecasting horizon. That
forecasts with shorter horizons have smaller errors, is selfevident. That all five horizons are classified
as significantly different by multiple range tests, is somewhat surprising. For forecasting methods on
the other side, no significant differences could be found by these tests. The reason for this failure may
be twofold. Multiple range tests are, in general, rather conservative and the observed differences in
the MAPE's and RMSPE's are numerically small. We use :a modified version of a paired #test in order
to overcome these problems. The null of nonsignificant differences between forecasting methods is
rejected if

) |xi.‘xj.| > N2nSpFyy.

In this expression, x; and x; denote sample sums of MAPE's and RMSPE's, respectively, for method i
and method j, n is the sample size, a the number of levels, and SR the residual mean square of the
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ANOVA table with (n—a) degrees of freedom. The outcome of this testing procedure is given in Table
6. We see that for both :accuracy measures, MAPE and RMSPE, BSM is definitely superior to SMACX
and ARIMA. There exists some evidence that it also dominates SMAC. The poor performance of
SMACX is :an obvious consequence of setting the damping factor equal to 1.00. This -operation is far
from optimal in the context of forecasting. It might, however, provide valuable qualitative information
on-the future cyclical development of industrial production. '

Of the three possible interaction effects only that between forecasting methods (#M) and production
country (C) iis statistically significant. There exist apparently some differences between Austria and
Germany in the accuracy of the tested forecasting method. The :situation can be looked at from two
perspectives:

(® the factor FMf is specified and the data, on which the analysis is performed, are restricted to a
given country;

(i) the factor Cis specified, and the data are restricted to a given method.

The first approach shows where any statistical differences lie among forecasting methods for a given
country. The second -approach informs us about differences between the two countries for a given
forecasting method.

Table 7
Modified pairwise z-tests for interaction effects between forecasting methods and production country: RMSPE

Case (i)

Austria Germany
BSM SMAC SMACX ARIMA BSM SMAC SMACX ARIMA
BSM . .
SMAC 0.221 . 3.623*
SMACX 1.075 0.854 . 6.976™* 3.453*
ARIMA 2.551* 2.330* 1.476 . 3.763* 0.230 3.223*
Case {ii)
Austria
BSM SMAC SMACX ARIMA

BSM 2.679*
Germany SMAC 0.623

SMACX 3.222*

ARIMA 1.417

* indicates 5% level of significance,
** indicates 1% level of significance
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Table 8

Modified pairwise z-tests for interaction effects between forecasting methods-and production country: MAPE

Case (i)
Austria Germany
BSM SMAC SMACX ARIMA BSM SMAC SMACX ARIMA
BSM . .
SMAC 0.109 . 2.971*
SMACX 1.318 0.427 5.821* 2.850 .
ARIMA 2.300* 2.409* 1.982 3.162* 0.191 2.659
Case{(ii)
Austria
BSM SMAC SMACX ARIMA

BSM 2.822*
Germany SMAC 0.258

SMACX 2.681*

ARIMA 1.960

* indicates 5% level of significance,
** indicates 1% level of significance

Since multiple range tests yield no significant results, we apply the above mentioned modified ¢-tests.
The outcome of these tests is presented in Tables 7 and 8. For both measures of accuracy, RMSPE
and MAPE, we observe differences in the performance of the forecasting methods for a given country.
These observed differences are for Germany much more significant than for Austria. For ‘Germany,
we find that BSM -definitely outperforms the other methods. SMAC and 4RIMA yield predictions of
similar absolute accuracy. SMACX gives by far the worst results. For Austria, we find only weak
evidence that BSM and SMAC do somewhat better than the other two methods, at least, as far as
absolute forecasting accuracy is concerned. When looking for differences between the two countries
for a given method, we find that BSM does significantly better in Germany than in Austria while, for
SMACX, the exact opposite is the case. The performance of the remaining two methods is similar in
both countries.

Directional forecasting accuracy

It is often argued by practitioners that, in situations where both :goals cannot be -achieved
simultaneously, :a forecasting method with a high degree of directional .accuracy is preferable to a
method with better absolute accuracy.
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Directional change accuracy

Naive no-change extrapolations are neither correct nor incorrect predictions of the direction of change
in a time series. A forecasting method outperforms such a naive model, if it can predict over 50% of
the directions of change which occur. With monthly, seasonally unadjusted data, we have two
possibilities to measure the directions of change: first differeneces (against the previous month) and
annual differences (against the corresponding month of the previous year). The month-to-month
differences of industrial production, for which strong seasonal movements are characteristic, exhibit
wild fluctuations but are stationary in general. Annual differences, on the other side, are far less
volatile but, often, a significant time trend is present. Moreover, by forming annual differences much
information is lost. Since the results for month-to-month and annual differences diverge substantially
for the two production series under analysis, we decided to present both. They are given in Tables 9
and 10. What we present in these tables are the percentages of directions of change predicted
correctly by a particular forecasting method.

Table 9
Forecasting performance: Direction of change error in month-to-month differences
Percentage of direction changes forecast correctly
Forecasting Forecasting horizon in months
methods 1 6 12 18 24
Austria
BSN 88.2 92.4 916 89.9 91.6
SMAC 88.2 89.9 91.6 89.1 91.6
SMACX 89.9 87.4 86.6 88.2 89.9
ARIMA 89.1 91.6 90.8 89.1 89.9
Germany
BSM 95.8 95.0 95.8 94.1 96.6
SMAC 95.8 92.4 93.3 90.8 91.6
SMACX 95.0 90.8 87.4 83.2 79.0
ARIMA 95.8 95.0 93.3 89.9 95.0

We begin with a discussion of the results for first differences. We are somewhat surprised that here
the relative forecasting performance is practically independent of the length of the forecasting
horizon. The percentage of directions of change, which are predicted correctly by a particular method,
hardly decreases for longer horizons (SMACX in Germany is the only exception). The explanation lies
in the fact that we have -eliminated the trend by taking first differences. Erratic fluctuations in the
slope of a trend line seem to be the main cause of big forecast errors. The rest, that remains after
removing the trend, is dominated strongly by seasonal fluctuations and, obviously, can be predicted
very accurately. A substantial difference in the forecasting performance between Austria and
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Germany is also worth noting. Apart from SMACX, all other forecasting methods exhibit a better
relative performance in Germany, whereby the high percentages of correctly forecast month-to-month
changes for BSM and, most surprisingly, ARIMA are especially remarkable. One possible explanation
might lie in more stable climatic conditions in Germany.

Table 10
Forecasting performance: Direction of change error in annual differences
Percentage of direction changes forecast correctly
Forecasting Forecasting herizon in months
methods 1 6 12 18 24
Austria
BSN 91.7 81.5 75.0 65.7 62.0
SMAC 91.7 81.5 75.0 66.7 64.8
SMACX 91.7 824 69.4 64.5 68.5
ARIMA 90.7 '81.5 71.3 61.1 54.6
Germany
BSM 82.4 81.5 722 63.0 58.3
SMAC 83.3 83.3 722 58 3 54.6
SMACX 85.2 82.4 67.6 52.8 491
ARIMA 83.3 79.6 69.4 58.3 52.8

Removing the seasonality by annual differencing and leaving the trend untouched yields results,
which are more conform to expectations. In both countries, the relative performance deteriorates
continuously with the increasing length of the forecasting horizon. This substantial decrease in the
percentage of correctly predicted directional changes is caused by errors in the trend extrapolations.

The completely different relative forecasting performance of the analysed methods for month-to-
month changes and for annual differences is in open conflict with the opinion of many experts. They
often believe that month-to-month changes are unpredictable because of erratic cyclical :and seasonal
fluctuations, while the evolvement of the trend is thought to be stable and, therefore, easierto predict.
For the industrial production of Austria and Germany just the opposite seems to be true however.
- Since correct predictions of the trend play such a prominent role for the forecasting performance, we
turn to a closer inspection of this problem before concluding this paper.

Trend change accuracy

Making use of the definitions given in the relations (4) of the theoretical section, we can classify
forecasts into downturns / no :downturns / upturns / no upturns. Comparing these values with the
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actual trend movements, we can calculate the percentage of trend changes forecast correctly. These
percentages for different forecasting horizons, different forecasting methods and different production
countries are given in Table 11. The method, by which these figures are derived is demonstrated
exemplarily in Table 12 for one month ahead forecasts with BSM.

Table 11
Forecasting performance: trend change error

Percentage of trend changes forecast correctly

Forecasting horizon Forecasting method Production country
(months) Austria Germany
1 BSM 94(4) 93(4)
SMAC 85(3) 97(1)
SMACX 97(1) 96(2)
ARIMA 96(2) 95(3)
6 BSM 81(3) 71(3)
SMAC 83(2) 77(2)
SMACX 86(1) 79(1)
ARIMA 80(4) 74(3)
12 BSM 64(3) 59(3)
SMAC 64(3) 62(2)
SMACX 83(1) 72(1)
ARIMA 68(2) 58(2)
18 BSM 53(3) 44(3)
SMAC 54(2) 48(2)
SMACX 79(1) 66(1)
ARIMA 52(4) 43(4)
24 BSM 36(4) . 36(3)
SMAC 42(3) 44(2)
SMACX 84(1) 63(1)
ARIMA 44(2) 33(4)

From Table 11, we note immediately that the percentage of trend changes forecast correctly drops
significantly with the increasing length of the forecasting horizon. This result is no surprise and
corroborates our -above hypothesis that trend change errors are a more serious problem than
inaccuracies in the prédiction of short term components. We detect some differences in the trend
change accuracy between Austria and Germany. Apart from the predictions with a forecasting horizon
of 1 month, the trend change accuracy for all tested forecasting methods is iin Austria substantially
better. The most interesting information of this table is the excellent performance of SMACX in this
context. Splitting up the long run component of :a time series into a slowly changing trend component
and a repetitive cyclical component leads to a substantial improvement in trend change accuracy. For
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Austria, the percentage of trend changes forecast correctly by SMACX is, even for a forecasting
horizon of 24 months, with more than 80% extremely high. Thus, we observe here a substantial trade-
off between absolute and relative forecasting performance, and as a source of qualitative information
SMACX should not be ignored. This result has a very interesting implication. Apparently, statistical
techniques can provide valuable information, if only the right questions are asked. To do this, may not
be easy for analysts who are no trained statisticians.

Table 12
Trend change accuracy: one month ahead forecasts with BSM
Austria Germany
Correct Incorrect Total Correct Incorrect Total

1 month ahead

Downturn 2 0 2 2 0 2
No downturn 93 2 95 86 6 92
Total 95 2 97 88 6 94
Percent 97.9 2.1 100.0 93.6 6.4 100.0
Upturn 0 1 1 1 0 1
No upturn 15 4 19 20 2 22
Total 15 5 20 21 2 23
Percent 75.0 25.0 100.0 91.3 8.7 100.0
Overall total 110 7 117 109 8 117
Overall percent 94.0 6.0 100.0 93.2 6.8 100.0
Conclusions

In the present paper, we compare the forecasting performance of structural time -series models with
that of a traditional ARIMA model. The forecasting performance of model can be evaluated from two
perspectives. One can use the absolute magnitude of the committed forecast errors as yardstick or
one can rely on a model's ability to predict turning points as evaluation criterion. The computed
statistics are often refered to as measures of absolute and relative (or directional) accuracy,
respectively.

As far as absolute accuracy is concerned, even 24-months-ahead forecasts might be classified as
highly accurate according to international standards. Our own standards :are more stringent, and we
would say that forecasts with a horizon of up to 12 months can be considered as sufficiently reliable.
Next, we iinvestigate whether the iength of the forecasting horizon, the forecasting method, and the
production country have significant effects on the absolute .accuracy. The forecasting horizon turns
out to be the most influential factor. The longer the horizon, the larger the committed errors. This
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result is more or less trivial. The forecasting method also has a significant effect. A ranking of the
tested methods can be determined. Structural models outperform the traditional 4RIMA model clearly.
Somewhat surprising is however, that the basic structural model does better than more sophisticated
model versions with an additive cyclical component. The third tested factor, namely the production
country, is of no relevance.

Basing the judgement on relative measures of accuracy changes the ranking of the tested forecasting
methods completely. The structural models remain superior, but now the sophicated model versions
with additive cyclical component dominate. Here, we also come upon one of the most surprising
results of the whole paper. We detect that problems with the prediction of the trend are mainly
responsible for a poor directional forecasting performance. Once the trend is removed, the remaining
rest can be forecast perfectly, even for a horizon of 24 months. ‘

It follows as final conclusion from this study, that structural time series models are superior to a
traditional ARIMA model for modelling industrial production in Austria and Germany. Besides a
forecasting performance, which is definitely at least as good as that of a ARIMA model, they offer
additionally valuable information about trend, seasonal and, possibly, cyclical components.
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