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1.Introduction

In economics textbooks equilibrium analysis is usually introduced
by the standard two-good model. Within this simple framework all
the basic questions of equilibrium analysis - that is existence,
uniqueness and stability of a market clearing price vector - can
‘be thoroughly discussed with comparatively simple analytical
means. The same applies to the pitfalls of this theoretical
approach, all of which can be addressed within the two-good model
without being too demanding in terms of advanced mathemathics.
This note is concerned with a pitfall of equilibrium economics
which had been perceived as such no sooner than the early 1980s
as ’chaos’ became known to economists. Surprisingly, so far very
little attention has been paid to this new threat to mainstream
economics by equilibrium economists, let alone by textbook
authors.

*) To be published in Jahrbuecher fuer Nationaloekonomie und
Statistik



To be more specific, the point in question is the occurance of
chaos in standard equilibrium dynamics as it is introduced in
textbooks for undergraduates. We will show in this note that
chaos can affect the simplest version of a Walrasian exchange
economy, the familiaf two-good model.

The paper is organized as follows: We begin by introducing the
basic assumptions of the standard general equilibrium model (i.e.
Walrasian exchange economy). Then the assumptions which allow
‘chaotic traps' in the two-good case are introduced. Finally we

discuss the conditions under which chaos may occur.



2. The Standard General Equilibrium Model

In the language of dynamical systems theory, the basic

assumptions of a Walrasian exchange economy read as follows

(1) The state space is the set of all (Zp§= 1, i=1,2,3,...,k) -
normalized prices, that is, the positive orthant of the unit

K

sphere S':'= (p inDd®: || p || =1, p > 0), D" the unit disk

(2) z(p) represents the Kk-vector of excess demands, z(p)

homogeneous of degree 0 in prices

K-1 K r
(3) z(p): 8 >R~ , z(p) C, T2l
. K=A
(4) pez(p) = 0 for p in S+ (Walras' Law)
(5) z4(p) > O, if pg = 0, i=1,2,3,...,k (Desirability)

Assumption (1) defines the price space of the equilibrium model
so that it becomes a differentiable manifold with the
mathematically nice properties of a sphere. Assumption (2)
excludes money illusion. Assumption (3) makes sure that the
excess demand function z(p) meets certain differentiability
requirements. Assumption (4) expresses Walras' Law, which

guarantees that z(p) lies in the tangent space of the sphere S::1



k-4
+ .

excludes not only boundary equilibria but also allows the

That is to say, z(p) is a vector field on S Assumption (5)
application of an elegant index argument to prove that our model

has at least one fixpoint or equilibrium (see Varian (1984)).

At the heart of the standard equilibrium model is the excess
demand function 2z(p). This function and its properties are
elemental for finding answers to the three basic questions of
equilibrium analysis: Is there an equilibrium price? 1Is there
uniqueness? Is there a natural adjustment process leading the
economy from a non-equilibrium price towards an equilibrium?
(Hildebrand-Kirman (1988)). On the basis of the assumptions made
in general equilibrium theory, only the existence problem has so
far been resolved satisfactorily. The uniqueness and stability
‘question remains still open and there is no hope that there will

ever be an analytically satisfactory answer to both problems.

All we can hope for is, in general, local uniqueness. If we
assume that the consumers have 'smooth ' indifference curves,
then there is a finite number of price equilibria and, in
general, this number will be odd (see, for example, Hildebrand-

Kirman (1988) p.47).



Nothing, however, can be said about the stability properties of
these equilibria. Under the given assumptions the excess demand
function z(p) is rather arbitrary and with it the disequilibrium
adjustment process, say, of type Walrasian tatonnement (see
Debreu (1974)). As Scarf (1960) has shown, with three goods,
there can be a stable limit cycle if prices adjust according to
Walras’ tatonnement. With four goods, the tatonnement process can
even generate chaotic dynamics (see Kehoe (1988)). Only in the
special two-good case things seem to look a bit better. If we do
assume that the disequilibrium adjustment process be of type
Walrasian tatonnement (i.e. the price of a good increases if the
excess demand for it is positive et vice versa) then, in the
simple two-good world, as attractor (repellor) there are
only equilibria, at 1least one of which is locally stable

(Hildebrand-Kirman (1988) p.48).

But even the relatively nice dynamics in the two-good world of
equilibrium economics falls when we drop the assumption which
guarantees it. We will see that when assumption (5) is replaced
by an equally plausible, or better, by an equally implausible
other technical assumption, the familiar two-good textbook model
behaves dynamically as strange as the n-good model. That is to
say, cycle and chaos are no longer excluded from the simple two-

good world of equilibrium economics.



3. Equilibrium Dynamics: A Slightly Different Two-Good World

Equilibrium economists are used to ruling out the possibility of
equilibria at a zero price by making some sort of desirability
assumption (Varian (1984) p. 245). In general, assumptions
similar to (5) are chosen so that z;(p) > 0 when pg = 0. But
desirability conditions are primarily technically motivated
rather than theoretically. The exclusion of boundary equilibria
makes it, in general, mathematically much handier to prove that
there exist equilibria for p > 0. For our purpose, however, it is
mathematically more convenient to allow a special boundary
equilibrium. We say that a market is to be taken in equilibrium
when the market price is zero (i.e., the paradise case). That is
‘to say, 2z(p)=0 when p=0. In order to make this assumption
theoretically more acceptable, we further state that this
boundary equilibrium be globally instable. For the sake of
simplicity, besides this boundary condition we demand global
uniqueness. That is to say, there is only one equilibrium for
p > 0 allowed. As for the stability property of this equilibrium,
we only demand that local stability be possible when prices
adjust locally according to the Walrasian tatonnement process or

the so-called law of supply and demand.



These requirements are fulfilled when the economy behaves as
follows: For slightly positive prices the desirability assumption
comes into play and z(p) increases. If p exceeds a certain
threshold p’ > 0, z(p) turns around and decreases for all p > p’.

That is to say, all goods are substitutes for prices p > p’ > 0.

Since we are dealing with the two-good model, let z(p) be the
excess demand function for good 1 and p the price of good 1,
0 < p < 1. Because of Walras’ Law, the excess demand function for

good 2 needs, of course, no explicit consideration.

One candidate for an excess demand function which meets our

requirements is the following map

(1%) z(p) = Kp(1-p)-p

where K€ [1,4]C R

The excess demand function (1*) goes from zero to minus one,
p € [0,1], crossing the p-axis at (K-1)/K from above (Fig.1l). 1In
other words, we get two equilibria, that is, z(p) = 0 for p = ©
and p = (K-1)/K, respectively. Since 1 & K 4, the equilibrium
prices stay within the interval [0,1].

The following discrete adjustment rule also meets our requirement
to permit a Walrasian tatonnement process in a local neighborhood

of p=(K-1)/K

(2%) P(t+l)-p(t) = z(p)



z(p)

Fig. 1

(K-1)




Substituting (1*) into this difference equation of first order

translates into the following mapping
(3%) p(t+l) = Kp(t) (1-p(¥))
which maps [0,1) onto itself for 1 K< 4. Equation (3%*) may

look quite familiar to the mathematically inclined reader, it is

the famous logistic map.



4. The ’Chaotic Trap’

No 1later than now should it become clear why we have chosen an
excess demand specification and an adjustment rule which lead to
the logistic mapping. The logistic function belongs to the family
of quadratic maps whose qualitative properties have been most
thoroughly studied by ’chaos mathematicians’ (see, e.g. Devaney
(1986)). In addition, it can easily be shown that difference
equation (3*) satisfies all stability requirements we stated in
the previous chapter. For example, for K€ [1,3), we have an
equilibrium structure only, with p=0 unstable and p=(K-1)/K
stable (for K€ [1,2) monotonic convergence (Fig. 2) and for

K€[2,3) oscillation (Fig. 3)).

For K € [3.57,4]), however, we get a dynamic configuration with
seemingly erratic (chaotic) trajectories leading away from the
two equilibria p=0 and p=(K-1)/K, respectively, but still staying

within the state space of our model (Fig. 4).

In order to determine if the dynamic behavior of our model
for K € [3.57,4] is in fact chaotic we need to understand what is
meant by chaos. Loosely speaking, chaos occurs when for a typical
initial wvalue there is both sensitive dependence on initial

conditions and aperiodic motion (Kelsey (1988) p. 9).



p(t)

Fig.2

K =1.05




p(t)

Fig.3

K =299




Fig.4

K= 3.99



For our analytical purpose, we need a more formal definition. 1In
doing so we follow M. Woodford’s version of strong chaos.
According to Woodford (1989) P- 320, a function

x(t+1)=f(x(t),K) is strongly chaotic if

(i) it has at most a countable number of periodic points and all

of its points are unstable, and

(ii) for almost all initial conditions x(0) in X, the set of
initial conditions, there exists a probability measure u on X
that is absolutely continuous with respect to Lebesque measure
and that describes the asymptotic frequency distribution for
x(t). What is meant by that is that chaotic trajectories should

be ’‘observable’ for almost all initial conditions.

Jacobson (1981) proved that the 1logistic function X(t+1)=
Kx(t) (1-x(t)) 1is strongly chaotic for a set of wvalues of K

between 3.57 and 4 that is of positive measure.

(For the sake of completeness, for Kg[3,3.57) we get an
equilibrium-periodic orbit configuration where the two equilibria
p=0 and p=(K-1)/K are unstable and the cycle 1is asymptotically

stable).
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5. Concluding remarks

What does it mean from the viewpoint of equilibrium dynamics
when our simple two-good model governed by a Walrasian adjustment
process starts with K€ [3.57,4], p(t=0) an arbitrary non-
equilibrium price? It simply means that the auctioneer ‘whose
"sole function is to search for the market clearing prices’
(Varian (1984) p.244) fails to find an equilibrium regardless of
however close to one of the two equilibria the starting point is
chosen and regardless of the fact that in the course of the
Walrasian tatonnement a price offer is never being made twice.
That is to gay, even though the Walrasian auctioneer never stops
searching for new price offers he will not find the market
‘clearing prices he is so desperately looking for. A rather weird
economy which indeed deserves to be called chaotic. To make
matters worse, similar results can be obtained for a rather wide
class of functions of type (3*). If a family of functions of type
p(t+1)=f(p(t),K) is single-peaked, satisfies a special convexity
condition (i.e., f should have negative Schwartzian derivatives)
and is increasing in K, then the gqualitative properties are
similiar to those one gets for the logistic map (for details, see

Devaney (1986)).
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